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Numerous operational paradigms, technologies, and missions are emerging as newcomers 
to the National Airspace System (NAS) develop small Unmanned Aircraft Systems (sUAS), 
personal air vehicles and other Urban Air Mobility (UAM) concepts. As the list of applica-
tions expands, maintaining the safety of the current airspace system remains one of the core 
concerns preventing widespread commercial implementation of these concepts. Further, the 
risks associated with unmanned aircraft operations themselves have to be recognized and mit-
igated in a timely manner. Safety-critical risks include, but are not limited to, flight outside 
of approved airspace, unsafe proximity to people or property, critical system failures, loss-of-
control, and cyber-security related risks. Instead of reacting to accidents, a set of predictive 
and data-driven risk monitoring, assessment, and mitigation capabilities are envisioned to 
help capture and eliminate hazards as these systems become operational. NASA’s System-wide 
Safety project is performing R&D on such a safety assurance concept. As part of this con-
cept, this paper describes an architecture that continuously monitors a diverse set of onboard 
and ground-based sources to estimate and predict non-participant casualty risk during flight. 
Timely identification of the changing nature of this risk can inform decision making processes 
to mitigate current and impending situations. 

I. Nomenclature 

AC Casualty Area 
AP Populated Area 
C Casualties 
Cx Aerodynamic Force or Moment Coeÿcient 
γ Impact Angle 
δ Control E˙ector Input 
F Aerodynamic Force 
Hp Height of Person 
J Rotor Advance Ratio 
Luav UAV Length 
M Aerodynamic Moment 
N Number of People in the Area of Interest 
P(C) Expected Casualty Probability 
Q Vector of Random Variables 
q Possible Outcome of a Random Vector 
Ruav E˙ective UAV Radius 
Rp Radius of Person 
wspan Wing span 
X Vehicle State Parameters 
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II. Introduction 

New airspace operations such as those involving small Unmanned Aircraft Systems (sUAS) are rapidly emerging 
within the commercial domain thanks to their anticipated benefits; potentially increasing security, safety and 

productivity within law enforcement, emergency rescue, environmental and infrastructure monitoring, agriculture, and 
other fields. Fueled by significant market interest, the industry, academia, and the government have been working 
towards a seamless integration of sUAS into the National Airspace System (NAS) [1–3]. Demonstrating the safety of 
these applications will be one of the key factors in wide-spread implementation. One of the major challenges for urban 
UAS operations is to minimize the risk to the population on the ground in case of an aircraft malfunction that leads to 
a crash. Timely hazard identification and proactive risk mitigation capabilities are critical in ensuring the safety of 
these operations. NASA’s Aeronautics Research Mission Directorate (ARMD) strategic plan directs the development of 
advanced in-time safety assurance tools that can monitor, assess and mitigate risks [4]. Within this plan, it is envisioned 
that advanced safety assurance tools can be developed to leverage the increasing availability of data and the speed 
and accuracy of associated data analysis tools. Consequently, an in-time safety assurance concept of operations was 
introduced by the System-wide Safety (SWS) project for emerging autonomous low altitude operations near and over 
populated urban areas [5]. This concept assumes a UAS Traÿc Management (UTM) ecosystem to enable sharing of 
safety-relevant information [5, 6]. As an element of the SWS concept, this paper provides an overview of an architecture 
that utilizes various onboard and ground-based data to assess the potential for non-participant casualties when unmanned 
aircraft operations are conducted over densely populated urban settings. The underlying work for this architecture was 
based on the Unmanned Risk Assessment Framework (URAF) which was originally developed within NASA’s UTM 
project [7]. An instantiation of the modular URAF architecture was developed and implemented for onboard execution 
within the in-time safety assurance concept of operations*. This paper outlines a baseline onboard risk assessment 
capability that monitors and assesses a set of hazards throughout the flight. The identified risks are incorporated into 
onboard contingency action selection and risk mitigation functions. The organization of this paper is as follows: Section 
III provides the components of in-time risk assessment software developed from the URAF concept, Section IV presents 
an overview of the core Flight System (cFS) architecture and the implementation of in-time risk assessment software 
within the cFS environment, and Section V discusses potential onboard risk-informed decision making applications that 
may be considered as future work. 

III. In-Time Non-Participant Casualty Risk Assessment Framework
There are several publications relating to characterization of the impact of unmanned aircraft or its components to 

the population or structures on the ground [3, 8–13]. The risk assessment estimation model presented in this paper is an 
extension of the UTM Risk Assessment Framework (URAF) development which was previously documented in [7]. 
The framework consists of separate modules that utilize real-time aircraft health and environmental data to estimate the 
risk to populated areas on the ground due to flight-critical failure on-board the aircraft. These modules include: 

• A probabilistic graphical model that outputs mishap likelihood, 
• An o˙-nominal trajectory and impact point prediction model that estimates the trajectory following a failure and 
mishap location, and 

• A severity estimation model that uses a combination of impact point location, high-resolution dynamic population 
density data, roof penetration models and other onboard databases to determine the probability of experiencing 
one or more casualties. 

The URAF components given above were revisited to manage the potentially increased ground casualty risk 
associated with low altitude urban operations within the SWS in-time safety assurance concept. Compared to the 
previous iteration, the software was designed to be executed onboard which enables access to higher frequency, 
more accurate, and more types of aircraft health and state vector data. This allows for the use of high-fidelity 6 
Degrees-of-Freedom (6-DoF) vehicle trajectory prediction models to estimate the impact point throughout the flight. 
Additionally, the use of high-resolution dynamic demographic data assists in estimating the movement of the population 
of interest for more accurate potential casualty estimation. Finally, probabilistic failure likelihood estimation and 
contingency prioritization models were added that execute in time to be delivered to the onboard autonomous decision 
making algorithms. The following sections provide more details on key elements of the framework. 

*URAF components are also being incorporated into other pre-flight and in-flight risk assessment applications within the UTM project. 
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A. Failure Probability Estimation and Contingency Prioritization 
One of the challenges associated with sUAS risk management is the limited amount of historical/operational data 

which prohibits adequate UAS component and system reliability estimations. Due to rapidly changing system designs, 
lack of quality assurance procedures, and the use of non-standardized components, the sUAS fleet carry a considerable 
amount of uncertainty when it comes to establishing airworthiness assessments and regulatory procedures [14]. In 
order to characterize the uncertainties within the system, the Bayesian approach was selected as the method to estimate 
various hazardous conditions and the likelihood of these hazards to develop into accidents [7]. Besides the probabilistic 
estimation of imminent failure occurrence, the Bayesian model also provides the list of alternative contingency actions 
(e.g., flight termination, immediate landing, and return-to-launchpoint) and an assessment of their suitability considering 
internal and external parameters (available power capacity, presence of wind/turbulence, contingency actions’ impact on 
ground risk, etc.). Fig. 1 provides a generic Bayesian Belief Network (BBN) model designed for an octocopter UAS 
in order to visualize the concept. In the current version, the BBN model receives vehicle health parameters (battery 
charge level, GPS parameters, communication drop rate, individual electronic speed control (ESC) current and motor 
temperatures) which is used to inform the status of major systems such as navigation, propulsion, communication, and 
power system. Subsequently, the status of the main aircraft functions allows the prioritization of contingency alternatives 
as well as estimation of loss of control probability†. The data for conditional probability tables (CPTs) behind each node 
is populated by a combination of subject matter expert opinions and vehicle specific reliability data, where applicable. 
The model outputs, namely, the LOC probability and mitigation prioritization is delivered back to the cFS data bus as 
decision making support, which is discussed in Section V. 

Fig. 1 Mishap Likelihood and Contingency Prioritization Bayesian Belief Model. 

B. O˙-Nominal Trajectory and Impact Point Prediction 
An important component of risk assessment is the ability to predict o˙-nominal flight trajectories and respective 

impact points caused by influences such as atmospheric disturbances, control anomalies or propulsion failures. An “o˙-
nominal” condition can be defined as a significant deviation from the intended flight path or an extended loss-of-control 
that results in extreme vehicle attitudes beyond the normal flight envelope. Of particular interest are those trajectories 
that may impact an object or person, thereby increasing the probability of damage or injury. Some trajectories that 
are a result of complete loss of propulsion or control can be predicted by low-order, ballistic methods. However, 
many complex events, such as partial loss-of-control resulting in erratic and/or extended trajectories, may only be 
adequately predicted by a six degree-of-freedom (6-DoF) flight dynamics simulation. The current research was aimed at 
demonstrating high-fidelity trajectory estimation methods that are implementable in the URAF environment. Specific 
objectives were assessing computational requirements, trajectory prediction accuracy, and data/database requirements 
[15]. 

Recent NASA research has assessed the feasibility and data requirements for accurate trajectory predictions of 
small UAS vehicles for o˙-nominal conditions using 6-DoF simulation methods [16–18]. These e˙orts have focused 

†Additional failure modes such as degraded aircraft control or aircraft flyaway situations can also be estimated using BBN models. 

3 



on multirotor vehicles because of the sparsity of validated models for this class of vehicle especially for o˙-nominal 
conditions. The approach was to develop a high-fidelity simulation aerodynamic database from existing ground-based 
wind tunnel methods. Specifically this database was designed to be accurate for a wide range of flow incidence angles 
and vehicle angular rates that could occur in an extreme loss-of-control event. The database was defined using a modular 
architecture where separate aerodynamic models were developed for an isolated rotor and the bare airframe and then 
merged to enable an n-rotor architecture. Photos of the wind tunnel test setup are shown in Fig. 2. 
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(a) Bare airframe testing in NASA LaRC 12-Foot wind tunnel (b) Isolated propeller test configuration in NASA LaRC 12-Foot wind 
tunnel 

Fig. 2 Wind tunnel test apparatus for aerodynamic database development. 

The aerodynamic model structure can be represented as; � � � � � � 
F/Mb = F/Mb + F/Mb + F/Mb (1)

propulsion airframe interaction 

where F represent aerodynamic forces and M denotes aerodynamic moments on the respective body axes. 
This structure assumes that the propulsion and airframe can be modeled independently and any interactions between 

individual rotors or between the rotors and airframe can be accounted for separately. This approach enables the potential 
for generic modeling where di˙erent propulsion systems or airframes can be substituted or the geometric location for 
each rotor can be changed using the same propulsion model. It is recognized that interactions can be diÿcult to measure 
and/or result in complex models and therefore the potential limitations to this approach should be considered. 

Each term in Eq.(1) is a nonlinear function of non-dimensional similitude parameters which allows geometric and 
mass scaling to various model sizes. For example, as represented in Eq.(2), propulsion forces and moments can be 
modeled as a buildup of static terms (e˙ect of steady flow angle and advance ratio) plus dynamic terms (e˙ect of body 
axis angular rates) plus any interactions between individual rotors where Cx denotes aerodynamic force and moments 
on the body axes. � � � � � � 

Cb = Cb + Cb + Cb (2)x x x xairframe propulsion rotor interaction 

While this “build-up” approach is often used for modeling of fixed-wing configurations, the use of this modeling 
architecture remains a research area for multirotor aircraft. 

The modeling approach described above allows for the inclusion of highly nonlinear phenomena unique to rotors. 
For example, this database included a model of “vortex ring state”, a well-known behavior of rotary wing vehicles, that 
produce large oscillations in thrust during descending flight. The model development method of this phenomena is 
described in [16]. 

The nonlinear equations of motion used in the 6-DoF simulation are of the form in Eq.(3) and are described in detail 
in [3]. Trajectories are computed by numerical integration of Eq.(3) where X denotes vehicle state parameters, δ is 
given as control e˙ector input, and J is the rotor advance ratio. � � 

ÛX = f Xb, δb , J, F/Mb (3) 

4 
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Results of simulation testing to date have demonstrated the ability to predict highly non-linear trajectories due to 
propulsion failures, vortex ring state encounters, and control failures [16]. Research is continuing in several areas to 
further advance the feasibility and determine modeling and simulation requirements for onboard/in-time trajectory 
prediction. Aerodynamic modeling research is continuing to address the e˙ects of high vehicle angular rates on 
propulsion performance and on aerodynamic interactions between the propulsion system and airframe. Modeling of 
other critical o˙-nominal conditions such as turbulence, sensor failures and control degradation remains the subject of 
ongoing research with the goal of further advancing the range of o˙-nominal events that can be predicted. E˙orts are in 
progress to demonstrate the feasibility of a generic n-rotor simulation approach which will allow trajectory prediction for 
a large range of multirotor vehicles. Additional research will include probabilistic methods for characterizing trajectory 
dispersions and ground impact areas. A challenge in this approach is the development of realistic parameter dispersions 
unique to multirotor vehicles such as those applicable to environmental disturbances, aerodynamic behaviors, and 
avionics anomalies. 

C. Severity Estimation 
Within the context of this paper, risk of casualty following a sUAS crash is used as a proxy for severity estimation. 

In order to estimate likelihood of casualty several components are needed; 1) a predicted o˙-nominal trajectory and 
impact point or area (described in Section III.B), 2) estimation of population density within the flight/impact area, 
and 3) impact characteristics including impact angle, velocity, and consideration of sheltering e˙ects. The following 
subsections provide the formulation for severity estimation. 

1. High-resolution Population Density Data 
The benefit of employing a high-fidelity impact point estimation model can be sensitive to the resolution of the 

available population density data for the given location and point in time. Acquiring quality population density data is 
often the bottleneck in estimating casualty risk due to its dynamic nature. Ground risk assessment studies often employ 
median population density values for rural, suburban, and urban settings [3, 19, 20]. However, this constitutes a gross 
estimation which does not take several important parameters into consideration such as time of the day, day of the 
week, or time of the year. Especially for high density urban settings, the population density can di˙er significantly 
throughout the day (e.g. during commuting and lunch periods) or grow substantially due to an open air assembly (e.g. 
sporting events and concerts) [3]. A more accurate representation of population density and movement is paramount for 
several areas of research including food security, climate change, natural disasters, and city planning [21, 22]. Recently, 
geolocation data obtained from mobile phones has been shown to overcome the limitations of census based solutions 
given the ubiquitous use of smart phones [23]. In order to better capture and demonstrate the dynamic aspects of 
population density within an urban environment, the concept provided in this paper employs a dataset acquired from a 
commercial company which specializes in population analytics and location-based data solutions‡. The commercially 
available population activity density data provides movements of population within the area of interest at a 10m x 10m 
resolution in one hour increments, typically with a two month processing delay. However, it is important to note that 
although the population density data remains historical, it provides a dynamic and higher resolution representation of 
expected population density. For instance, population activity data observed on July 4th, 2017 for a given hour can be 
used to approximate the 2018 values. A sample dataset for downtown San Francisco for July 4th, 2017 between 7PM 
and 8PM is given in heat map representation in Fig. 3. 

2. Probability of Casualties 
As stated previously, the probability of casualties due to a UAS crash over an urban environment needs to be 

estimated in order to fully account for the risks associated with the flight. Because of the hard to predict nature of 
population dynamics and the large number of uncertainties, a probabilistic model is best suited for this task. For this 
reason, the severity estimation module was developed within the URAF framework to estimate the expected number of 
casualties and the probability of casualties§. This model uses population density, sheltering e˙ects, casualty impact 
area, and the kinetic energy at impact to determine the severity of a mishap. This work expands on the previous 
probabilistic model within the URAF architecture [7] (where only the expected number of casualties was compared) by 

‡For testing, population density activity data was acquired for Reno, NV, San Francisco Metropolitan Statistical Area, CA, and Corpus Christi, 
TX from AirSage, Inc.

§These estimates can be computed prior to flight (based on a flight plan and failure scenarios), or continuously during flight (based on real-time 
conditions). 

5 
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Fig. 3 Sample Population Density Data for the City of San Francisco. 

adding information regarding the probability of impacting one or more casualties. This type of approach enhances the 
formulation in regards to the severity of the mishap as well as being useful in hypothetical scenarios where the exact 
location of people is known. 

Within the context of this paper, the metric to quantify the risk to 3rd party or uninvolved public is the probability of 
causing one or more casualties. In order to compute this metric, first, the casualty area for people in the open (i.e., not in 
buildings or otherwise sheltered) is considered as: 

AC = (wspan + 2Rp )(Luav + 
Hp 
+ 2Rp) (4)

tanγ 
where wspan represents the wing span, Rp is the radius of a person, Luav is the length of the UAV, HP is the person’s 
height, and γ is the impact angle with respect to the ground [24, 25]. This formulation serves well for fixed wing UAVs; 
however, a more general formulation that includes quadcopters is given by � � Hp

AC = π(Rp + Ruav)
2 + 2 Rp + Ruav (5)

tanγ 

where Ruav is the characteristic radius that is used to define the UAV geometry as a circle. 
The casualty area is defined such that any person inside it can be considered a casualty. By assuming that people can 

be randomly located anywhere inside a populated area, Ap, the probability that a specific person will be a casualty is 
simply expressed by AC /AP . Figure 4 illustrates the casualty area with respect to the populated area. 

6 
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 Fig. 4 Casualty Area Schematic 

Note that γ, as seen in Eqs.(4) and (5), is a function of the trajectory, which in turn is a function of the uncertain 
parameters due to the malfunction mode, vehicle aerodynamics, and atmospheric conditions. For simplicity, these 
uncertain parameters are grouped together and represented by the variable Q, where Q = (Q1,Q2, · · · Qk ). The 
probability of c casualties given a set of parameters, q, follows a binomial distribution and is given by: � �c � � Nq −cNq ! ACq ACqP(C = c |Q = q) = 1 − (6)

(Nq − c)! APq APq 

where N represents the number of people in the populated area. The subscript q shows the dependency on the uncertain 
parameters Q. This dependency is due to the fact that the impact point and trajectory approach angle, which a˙ect the 
number of people in the population density, are a function of di˙erent uncertain parameters. By using the law of total 
probability, the equation becomes: ¹ 

P(C) = P(C |Q) f (Q)dQ (7) 

where f (Q) represents the joint distribution of Q. This can be approximated by using Monte Carlo techniques such that Õ 
P(C) ≈ 

1 M 

P(C |Q(i)) (8)
M 

i=1 

Finally, the probability of having n or more casualties in a populated area AP can be expressed by computing the 
cumulative distribution of P(C). This formulation can be easily extended to the di˙erent sheltering categories by 
modifying the casualty area formulation. The e˙ects of sheltering on casualty estimation for various roof styles was 
previously demonstrated in [7]. The methodology shown in this paper can be modified to reflect sheltering e˙ects. 

D. Risk Construct 
As previously stated in Sections III.A and III.C, the risk assessment module estimates mishap likelihood and 

probability of causing one or more casualties, respectively. Onboard, these values are transmitted to the cFS 
communication bus (discussed in Section V) along with a quantized risk value (i.e., low, medium, high) which is 
based on a modified FAA Risk Matrix [26]. However, at the time of writing, FAA does not provide specific guidance 
on likelihood and severity definitions for unmanned aircraft flight operation risk over populated areas [19], thus, it 
is important to note that the acceptable thresholds for severity (minimal, minor, major, catastrophic) and likelihood 
(frequent, probable, remote, and improbable) were chosen arbitrarily here for the purposes of concept evaluation and 
demonstration (Fig. 5). As an extension to the current approach, a modified version of the Specific Operation Risk 
Assessment (SORA) methodology developed by Joint Authorities for Rulemaking on Unmanned Systems (JARUS) 
could be considered. JARUS SORA methodology was based on the principle of a holistic/total system safety risk-based 
assessment model used to evaluate ground and air risks related to a given operation [19]. The SORA methodology also 
provides guidance on assessing residual risks following the use of strategic and tactical mitigations. These aspects will 
be incorporated into future versions of the framework presented here. 

7 
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Fig. 5 Notional Risk Matrix. 

IV. core Flight System (cFS) Architecture Integration 
The framework discussed in Section III was designed to be operated onboard the aircraft to support risk-informed 

decision making throughout the flight. This decision-making function may be performed by a remote operator or pilot, 
but this framework particularly focuses on supporting autonomous/automated decision-making functions onboard. A 
baseline capability was tested as part of the larger SWS system construct which made use of NASA’s cFS architecture. 
cFS was originally developed by Goddard Space Flight Center for spacecraft flight software systems¶. 

A. core Flight System (cFS) 
NASA’s cFS is a platform, a software framework, and an environment that is designed to develop and re-use flight 

software applications. The stable and robust cFS architecture allows the communication of independently-executing 
functions over a shared information bus, similar to applications communicating through a cloud based structure 
(Fig. 6). This allows independent development and testing of various applications that will perform as monitoring, 
assessment and mitigation functions within the SWS safety assurance system concept [5]. The in-time non-participant 
risk assessment software described in this paper is packaged as an application that performs monitoring (via sensor data 
fusion and interpretation), assessment (development of the dynamic risk construct) and contingency action/mitigation 
(via suggestions developed by Bayesian models) functions. The dynamic risk and associated contingency actions 
are broadcast within the cFS bus to other applications that are tasked with decision making and execution of these 
contingencies. 

B. Onboard In-Time Risk Assessment Software 

1. Structure 
The onboard risk assessment capability presented in this paper was initially implemented and tested on the cFS 

architecture which was in turn implemented on a small multi-rotor UAS platform. Within the cFS architecture, besides 
applications, users can also develop libraries. The term library refers to functions that can only be called within other 
applications present in the cFS architecture. The libraries do not interact with the cFS software bus and they run 
independently. This structure not only enables simultaneous use of the functionality by multiple applications but also 
allows relatively faster execution time which proves to be essential for proactive decision making capability. The in-time 
risk assessment software was developed as a library, allowing for other onboard applications to call the core functionality 
as well as the underlying models of the software, individually (i.e., trajectory, severity, likelihood). Additionally, an 
application was developed to use this library so that the combined functionality of the risk assessment software can be 
executed and broadcast on the software bus. 

2. Inputs and Outputs 
The components of the framework described in Section III are implemented within the cFS architecture as given 

in Fig. 7. The risk assessment software receives dynamic aircraft position and health information via standard 
¶See http://cfs.gsfc.nasa.gov for further information on cFS. 
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Fig. 6 cFS Architecture for Testing In-Time Safety Assurance System Concepts [5]. 

onboard systems within the Micro Air Vehicle Link (MAVLink) structureƒ. Additionally, within the in-time safety 
assurance concept, the UTM ecosystem components** (Supplemental Data Service Providers (SDSPs) and UAS Service 
Supplier (USS) among others) provide weather, traÿc and other pertinent flight information which is accessible via cFS 
architecture. Using the data sources obtained from cFS and carried onboard, the in-time risk application constructs 
and combines the submodels (population density, likelihood, trajectory, and severity models) to estimate instantaneous 
mishap risk, the preferred contingency action considering available resources as well as the predicted impact point. 
These output variables in addition to the individual model outputs and data are broadcast to the software bus for other 
applications to use (e.g. decision-making functions regarding executing contingencies). The software output parameters 
are also accessible via the library functionality, if preferred (e.g. to overcome bus speed limitations). 

Fig. 7 In-Time Risk Assessment interactions with the cFS Architecture. 

ƒMAVLink is a protocol developed for communication between unmanned vehicles and the ground control stations as well as the inter-
communcation among the subsystems of the vehicle. See https://mavlink.io/en/ for further documentation.

**See Refs.[5, 6] for further information on SDSPs and USSs. 

9 

https://mavlink.io/en


D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
Ju

ne
 1

9,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
30

53
 

3. Software-in-the-Loop and Flight Testing 
As previously stated, the non-participant risk assessment software resides on the aircraft and is primarily designed to 

inform other onboard decision making and trajectory guidance software. At this time, there is no in-flight visualization 
for the ground control station operator consumption, however, the output of the risk application which is transmitted over 
the cFS bus is recorded and available for post-flight analysis. Additionally, a software-in-the-loop (SITL) simulation 
is developed to visualize the flight environment and observe/record the interactions among the cFS applications, risk 
application functions and MAVlink messages. SITL provides a simulation environment where the capabilities of 
the code can be tested without the need to use flight hardware to run ArduPilot†† software. The SITL is capable of 
generating vehicle-specific flight dynamic data as well as simulated aircraft sensor data which are relayed through a 
telemetry port connection. The cFS architecture receives the aircraft state vectors and sensor data via the telemetry port 
and subsequently disseminates the information throughout the system to all of the resident cFS applications, including 
the risk assessment software. This process is continued until the simulation is ended or the connection is broken. 
Figure 8 provides the SITL setup used to test the software. A command line interface is used to deliver commands 
to the autopilot (upper-left corner). A map is employed to define and display the flight mission for testing (lower-left 
corner). A console displays the general characteristics of mode and progression features (upper-right corner). Finally, 
command prompt display provides the cFS data stream and risk assessment software outputs, namely, the contingency 
action probabilities (abort, land, return-to-base, or continue flight), loss of control probability, casualty probability, and 
notional risk matrix outputs (lower-right corner). 

Fig. 8 User Interfaces for Software-in-the-Loop Testing 

††Ardupilot is an open source unmanned aircraft flight software capable of controlling numerous autonomous aircraft and is used as a research 
platform for this e˙ort, see http://ardupilot.org for further details. 
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V. Decision Making Support 
The components of the risk assessment software described in the previous sections were primarily developed to 

explore the design space toward enabling the concept described in [5] which envisions a scalable system that can 
be tailored to a specific domain and its inherent risks. This system should be capable of integrating a diverse set of 
operational and environmental data to monitor and assess the likelihood of risk and hazard states. Once potential risks 
are identified and evaluated, the objective is to mitigate these hazardous conditions via automated planning and execution 
of timely responses. The software architecture discussed in this paper is initially aimed at monitoring and assessment 
functions associated with non-participant casualties. The sections below discuss planned R&D and approaches that 
would apply this risk assessment software and framework to autonomous risk mitigation. 

A. Path Planning 
One of the planned uses of the onboard assessment of ground impact risk is to assist the autonomous path planning 

function. It is envisioned that future autonomous UAS systems will be equipped with obstacle-avoidance functionality 
which will re-route or follow pre-determined contingency measures. In cases where the aircraft has to be diverted 
due to a detected obstacle or aircraft, the re-routing algorithm would primarily ensure that the obstacle or aircraft is 
cleared while selecting and executing the mitigation action. During the diversion, the path planning algorithm could 
be informed of the ground casualty risk of alternative paths in addition to existing parameters (available resources, 
airspace/geofence limitations, etc.). Alternatively, given that the risk assessment software collects, analyses, and 
disseminates aircraft health data, the decision making algorithm can have access to the available aircraft resources prior 
to selecting a particular action (e.g., detect and avoid, geofence conformance, return to base, and return to mission). An 
example detect-and-avoid technology called ICAROUS (Integrated Configurable Algorithms for Reliable Operations of 
Unmanned Systems) provides a flexible autonomous decision making platform that allows modular integration with 
other onboard hardware and software [27]. Initial research is underway to apply the risk assessment functions described 
previously in concert with ICAROUS-based functions (also implemented within the cFS architecture). ICAROUS can 
proactively query the risk of alternative paths, allowing the integration of the non-participant casualty risk capability 
into determination and direction of detect-and-avoid or other contingency maneuvers (e.g. land, return-to-launchpoint). 

B. Contingency Planning 
As part of the risk assessment process, the onboard BBN model considers raw aircraft telemetry values as well as 

potential SDSP-based health and environmental assessment services to produce two outputs: o˙-nominal condition 
probabilities (e.g., loss-of-control risk for the current iteration of the architecture) and a suggested mitigation action 
based on the current and projected aircraft health. If the safety margins deteriorate below acceptable levels, the risk 
software outputs the preferred mitigation action (abort, land, return-to-base, or continue flight) to the cFS bus. This 
information can be used to inform the autopilot or the ground control station (GCS) operator of the imminent risk and 
recommended action within the aircraft’s capability. 

C. Highly Autonomous Low Altitude Urban Operation Support 
Within the emerging urban operations domain, the in-time safety assurance concept assumes that an information 

sharing infrastructure will be present. This infrastructure would be able to collect, disseminate and update large-scale 
data obtained from on-board and o˙-board sensors and services as required to meet mission-specific safety requirements. 
The SWS ConOps highlights pre-flight, in-flight, and post-flight utilization of the architecture. During the pre-flight 
phase, GCS operators would reach out to generally available broadcast data or opt in to mission-specific or request-reply 
type information. The data which could be obtained from recent observations or forecast models would advise the 
operator and/or onboard safety software before the flight. For instance trajectory-specific, low-altitude wind gust and 
turbulence data or expected population density surrounding the flight plan provided by SDSPs will inform the operator, 
potentially resulting in a revised flight plan or launch window [5]. Alternatively, an SDSP providing a pre-flight 
non-participant casualty assessment service could be used‡‡. During the flight, via pre-loaded data, observed variables, 
models, and dynamic SDSPs, the aircraft will continuously monitor and assess current and future flight risks. The 
architecture provided within this paper would be one implementation of such an onboard risk assessment capability. 
Finally, following the flight, data observed throughout the mission would be uploaded to the relevant service providers. 
The post-flight information would be used to update the SDSPs (e.g., observed wind or population density activity) and 

‡‡Ground Risk Assessment Risk Provider (GRASP) SDSP is currently being developed under the UTM project plan. 
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to validate the supporting models (e.g. aerodynamic models) [5]. Within the SWS ConOps, the pre-flight and in-flight 
risk assessment instantiations would continuously co-operate and work towards providing the most up-to-date ground 
risk information via the information sharing infrastructure. 
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VI. Concluding Remarks and Next Steps
As projected demand for unmanned aircraft operations increases, assuring the safety of such operations will play 

a significant role in determining the degree of widespread use - it will become either the enabler or the constraint. 
This will also be the case for future concepts like personal air vehicles and UAM concepts. As part of an overarching 
approach to safety assurance for emerging highly-autonomous operations, this paper presents an onboard architecture 
that monitors vehicle-specific parameters by integrating aircraft health data as well other data carried onboard (e.g. 
population density and wind speed/gust information). The information is used to assess casualty risk with regards to the 
current aircraft position and its future path. Research will continue toward improving the components of the onboard 
risk assessment service by incorporating additional failure models into the Bayesian network as well as the 6DoF 
model, providing dynamic updating capability to population density and environmental factors models. Additionally, 
the framework will be expanded to estimate property/building damage. Finally, the risk assessment capability will be 
integrated with decision making functions (such as are intended to activate fail-safe contingencies when o˙-nominal 
conditions occur or are predicted to occur). 
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