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This paper presents a data fusion algorithm, using an Adaptive Extended Kalman filter 
(AFK) for estimation of velocity and position of a UAV. A LIDAR sensor provides local 
position updates using a SLAM technique, a GPS provides corrections when available 
and an Inertial Navigation System (INS) is used as an additional input to the Extended 
Kalman filter. We adapt the measurement noise covariance (R) of the AKF based on 
both the Global Positioning System (GPS) receiver error as well as on the LiDAR point 
cloud point-to-point match error. A simulation environment was developed to test the 
proposed SLAM as well as navigation (e.g., autopilot) algorithms in a virtual, but accurate 
environment. We show that by adapting the measurement noise covariance (R) of the AKF 
we improve both the accuracy and reliability of the position estimate, specially in areas 
with GPS signal drop outs such as urban canyon environments. 

I. Introduction 

Modern aircraft systems are becoming increasingly dependent on satellite-based Global Positioning Sys-
tem (GPS) services for precision navigation and timing (PNT) as well as for guidance, navigation and control. 
Unfortunately, in urban environments GPS signals are extremely weak, un-precisse and highly susceptible 
to interference (both intentional and unintentional, from both natural and man-made sources). Therefore, 
GPS-based navigation algorithms for Unmanned Aircraft Systems (UAS) are even more susceptible to GPS 
vulnerabilities than manned aircraft. Precise Location and Navigation was identified as a technical challenge 
in the JPDO NextGen UAS develop11 ment roadmap, citing that the strong dependence of UAS on GPS 
technologies creates a potential single-point of failure, and the lack of an onboard human pilot and lack of 
situational awareness places human life and infrastructure at risk. Further, in the growing need to perform 
low-altitude UAS operations, a significant number of new environmental hazards and uncertainties are im-
posed on the unmanned aircraft system that limits or negates the ability for UAS to operate autonomously. 
For these emerging scenarios, GPS-based localization is not sufficient. GPS-free localization, mapping and 
avoidance are crucial missing technologies that limit the use of autonomous UAS in urban low-altitude en-
vironments. 

Simultaneous localization and mapping (SLAM) was first introduced in Smith and Cheeseman.6 It is a 
technique allowing a autonomous vehicle to simultaneously build a map of a previously unknown environment 
while also localizing itself within this map. SLAM based approaches have been very successful for ground 
robotics. When multiple sensors such as a GPS/INS and wheel encoders are available concurrently, the 
problem is usually solved through an extended Kalman filter Montemerlo et al.9 or a particle filter Thurn et 
al.13Aerial platforms however have more challenges to overcome which makes traditional SLAM approaches 
harder to implement. These are described in Achtelik et al.,1 Bachrach et al.4 as: 
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1. Limited payload reduce the onboard processing and sensing capabilities 

2. Indirect odometry compared to direct (wheel encoding) in ground robotics 

3. Indirect position estimates without GPS as well as rapid accumulation of error from integration of 
inertial sensors 

4. Fast dynamics 

5. Need to estimate and control velocity 

6. Constant motion 

The purpose of our research is to explore accurate navigation solutions for UAVs in urban environments 
by taking information from multiple different kinds of sensors in order improve the quality of position and 
velocity estimation. In order to do so, the use of a KF is explored in a loosely coupled scheme for fusing the 
information obtained from GPS, INS and LIDAR sensor. 

II. Related Work 

One of the earliest papers describing localization for aerial platforms in known mapped environments 
is He et al8 in which a quadrotor helicopter with the use of a monocular camera is able to autonomously 
navigate a previously mapped indoor environment. Angeletti et al.2 used a similar quadrotor helicopter 
to match scans from a 2D lidar to a known map and Gorzonka et al7 used a particle filtering method 
to localize a similar vehicle in a map built by a ground robot. Soloviev et al12 presented a method for 
integrating a laser scanner with INS for navigation in GPS-denied urban environments. This used a 2-D 
laser scanner detect features from reflecting objects in range of the scanner. Line features are extracted from 
the scan images and exploited for navigation, as lines are computationally efficient to extract, are common 
in man-made environments, and are repeatable. Bachrach et al34 implemented 2D lidar based SLAM on 
a quadrotor micro air vehicle (MAV). This approach separates the SLAM process, which provides lower 
frequency position updates, from the real-time navigation and control system. Two key differences from our 
implementation are that the SLAM algorithm is run on the ground station computer and it is only done in 
2D. 

Typical methods for 3D map building from onboard LiDAR use off-line batch methods, often using 
loop closure to correct for drift over time. A method for real-time odometry and mapping using range 
measurements from a LiDAR is described in Zhan et al.14 A similar approach of splitting the simultaneous 
localization and mapping in two algorithms is used. One algorithm performs lidar odometry at a high 
frequency but low fidelity to estimate velocity of the lidar. Another algorithm runs at a frequency of an 
order of magnitude lower for fine matching and registration of the point cloud. Because the method in 
Zhan et al.14 achieves both low-drift and low-computational complexity without the need for high accuracy 
ranging or inertial measurements our implementation uses a modified version of it for performing SLAM on 
a aerial vehicle in GPS degraded urban environments. 

III. Problem Statement 

The problem addressed in this paper is to use data fusion between a LiDAR sensor, GPS and IMU to 
improve the velocity and position estimates of a UAV. LiDAR based odometry and scan-to-scan matching 
SLAM techniques are inherently prone to drift and have an unbounded error. Additionally, the LiDAR 
has to be within detection range of physical features in order to perform ego-motion estimation on the 
point cloud. Unlike LiDAR SLAM techniques, GPS sensors do not drift over time, however they suffer 
from signal obstruction and reflections caused by nearby objects. Although prone to these errors in certain 
circumstances, even low-cost GPS systems are able to correct the drift and limit the effects of LiDAR SLAM 
error during periods of accurate GPS updates. The GPS and LiDAR SLAM techniques are complementary 
in terms of their respective weaknesses and together can provide a much more accurate navigation solution. 
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IV. System Overview 

The algorithm in this paper is validated using LiDAR, GPS and Inertial Navigation System (INS) data 
from a simulation environment as well as by conducting a series of outdoor test flights using our custom 
UAV platform. 

A. Simulation 

The simulation environment is being developed at NASA Ames Research Center for research in guidance, 
navigation, and control systems. It provides a fully documented hierarchical control system architecture, 
inspired by commercial transport aircraft autopilots. The simulated aircraft shown in Figure 1 uses the 
same simulated avionics and payload sensors as the real aircraft. The simulated payload sensors consist of 
a Velodyne VLP-16 3D lidar, an array of cameras and a downward facing sonar sensor. The simulated 3D 
lidar has a 360 degree horizontal field of view and a 30◦ vertical field of view with 16 channels and a 0.25◦ 

resolution. 

(a) (b) 

Figure 1. (a) S1000 octocopter (b) Sensor configuration of the Velodyne VLP-16 lidar and Athena 111m 
GPS/INS/ADHRS 

B. Hardware Platform 

The aircraft uses a DJI S1000 octocopter airframe shown in Figure 2 (a) with a open source Pixhawk 
autopilot. The vehicle is equipped with a 360◦ Velodyne VLP-16 3D lidar, a high accuracy Xsens Mi30 IMU 
and GPS system. The onboard computer is a Core i7 quad core computer with 8 Gib of memory. It will 
at first be used for sensor data collection to validate our models with the final goal of on-board real-time 
SLAM in GPS degraded environments. 
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(a) (b) 

Figure 2. (a) S1000 octocopter at NASA Ames (b) Sensor configuration of the Velodyne VLP-16 lidar and 
Athena 111m GPS/INS/ADHRS 

Airframe Make/Model DJI S1000 + DJI S1000 + 

Configuration Octocopter 

Weight 4.2 kg 

Payload Weight 2.12 kg 

Motor Power 500 W 

Motor RPM 9600 RPM 

Max Ground Speed 13.4 m/s (30 mph) 

Battery 6S 16000 mAh LiPo 

Flight Time 22 minutes (est) 

Table 1. Flight vehicle specifications 

V. Approach 

The conventional Extended Kalman filter is widely used for state estimation however it requires an 
accurate priori knowledge of the process (Q) and measurement noise (R) covariances. As the noise of both 
the GPS receiver and the LiDAR SLAM varies drastically throughout a flight based on the environment, our 
implementation uses an Adaptive Kalman Filter (AKF). Figure 3 shows the schematic of the implementation. 
The LiDAR and GPS data is logged at 5 Hz while the IMU data is recorded at 1000 Hz. The laser points 

˜received from one full scan is denoted as S and the underscript k is used to denote each individual scan 
cloud. The fusion of the GPS, LiDAR SLAM and INS information is combined by an Adaptive Kalman 
Filter (AKF) to provide accurate state estimates of the position and velocity. 

When LiDAR and GPS data is not available only IMU measurements are processed and when a new 
LiDAR frame is available, the measurement equations are changed to incorporate the new measurement into 
the kalman filter. This approach provides two main benefits. Firstly, it increases the accuracy of the position 
and velocity estimates. Secondly, it enables the system to provide updates at a much higher frequency than 
the LiDAR’s 5 hz which enables the autopilot to control velocity and position of the aircraft accurately in 
crowded environments. 
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Figure 3. Schematic of LiDAR SLAM, GPS and IMU integration 

Feature points are extracted from the registered LiDAR point cloud Sk and matched using Iterative 
Closest Point (ICP)10 to the previous point cloud Sk−1. The mapping block algorithm generates the map 
as well as a position estimate. The position output of the EKF is used as initial position guess for the ICP 
algorithm in order to converge to a solution faster. 

Figure 4. Ground station interface (left), path traveled by aircraft (center), aircraft navigating narrow urban 
street in Indianapolis, IN (right) 

A. Adaptive Extended Kalman Filter 

The Kalman filter is a optimal state estimator of a discrete time linear dynamic system perturbed by white 
noise Brown et al.5 where x is the state vector, z the observation vector and the index k denotes the time 
index. We use a slightly modified version of the extended Kalman filter Brown et al.5 for data fusion 

xk = Φk−1 + ωk−1 

zk = Hkxk + vk 

The observation vector zk of the extended Kalman filter is the position difference between the INS derived 
position PINS and GPS position PGP S as well as INS derived position and LIDAR derived position. " # 

PINSk − PGP Skzk = 
PINSk − PLIDARk 

The state transition and measurement model matrices are represented by Φ and H while the measurement 
noise v is assumed Gaussian with measurement noise covariance matrix R. 
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ω ∼ N(0, Q) 
v ∼ N(0, R) 
Q = process noise covariance matrix 
R = measurement noise covariance 

Algorithm for Kalman Filter 
1: x̂− = Φk−1x̂

+ 
k k−1 

2: P − = Φk−1P + ΦT
k−1 + Qk−1k k−1 

3: Compute Rk based on GPS noise and LIDAR point-to-point match error 
4: Kk = P −HT (HkP −HT + Rk)

−1 
k k k k 

5: Formulate zk 
+ − −6: x̂ = x̂ + Kk(zk − Hkx̂ )k k k 

7: P + = (I − KkHk)P −(I − KkHk)
T + KkRkK

T 
k k k 

x̂k 
− = a priori state vector 
+ x̂k = a posteriori state vector 

P − = a priori state error covariance matrixk 
P + = a posteriori state error covariance matrix 
Φ =process model matrix, state transition 
H =measurement model matrix 
zk =measurement vector 
Kk = Kalman gain 

B. Adapting measurement noise matrix R 

The measurement noise covariance matrix R is computed using both the LIDAR point-to-point scan match 
error as well as the dilution of precision (HDOP and VDOP) reported by the GPS. ⎤⎡ 

R = 

⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

σ2 
xyk 0 0 0 0 0 

0 σ2 
xyk 0 0 0 0 

0 0 σ2 
zk 0 0 0 

0 0 0 LRk 0 0 

0 0 0 0 LRk 0 

0 0 0 0 0 LRk 

⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

σxyk = HDOPk x σr 

σzk = V DOPk x σr 

LRk = ICPerror + (Nmax − Nk) 

σxyk = Horizontal position accuracy for time k 
σzk = Vertial position accuracy for time k 
Nk = Number of features detected in the LIDAR scan k 
Sk = LIDAR scan k 
Our LiDAR SLAM algorithm uses the best Nmax features detected to match two sequential scans Sk and 

Sk−1 and determine the egomotion from them. The noise covariance of the LIDAR depends on the root-
mean-square match error ICPerror between scans Sk and Sk−1 as well as based on the number of features 
detected in the scans. The more precise the scan matching is and the more feature the LIDAR sees, the 
more accurate the position estimate is. 

VI. Results 

This section presents our experimental evaluation of the proposed framework. Due to safety requirements, 
all flight tests are conducted with a tether attached to the aircraft and the state estimation from our filter 
is not used as input into the flight controller yet. 
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A. Flight Tests 

In order to analyse the performance of the LiDAR SLAM in different conditions, we use two test sites with 
different characteristics. The first test site is in close proximity of a large wind tunnel and high voltage 
power lines Figure 5(b), similar to an urban environment with high-rise buildings and the GPS problems 
associated with them. The second test site is a imitation of a lunar surface Figure 5(a). This site offers very 
few features for the LiDAR to reflect off and thus will test our SLAM system. 

-
(a) (b) 

Figure 5. (a) Roverscape test flight site at NASA Ames (b) Wind tunnel test flight site at NASA Ames 

The vehicle position estimate from GPS (Red), LiDAR SLAM (Yellow) and adaptive EKF (Green) is 
shown in Figure 6(a). The true start and end location were also recorded in order to calculate the position 
drift. The GPS and LiDAR SLAM position outputs are very similar for the first half of the test after which 
the LiDAR experiences some drift due to a drop in features being detected inside the empty grass field in 
close proximity. This can also be seen in Figure 6(b) by looking at the LiDAR noise covariance R. The 
GPS provides reliable position updates until the vehicle is within 40 meters of the wind tunnel building after 
which, due to multipath and signal obstruction, the GPS becomes very unreliable. The R measurement 
noise covariance over time is shown in Figure 6(b) with the X,Y and Z components of the GPS. After a 
total distance of 405 m traveled, the final position error of the GPS, LiDAR and AKF was calculated and is 
shown in Table 2 . By adjusting R online our filter is able to take advantage of the complementary nature 
of the GPS and LiDAR sensors and reduce the 24.3 m GPS and 7.5 m LiDAR SLAM position error to 3.42 
meters. 

(a) (b) 

Figure 6. (a) LIDAR (Blue), GPS (Red) and adaptive EKF (Green) position estimates and (b) R Measurement 
noise covariance matrix values over time for LIDAR and GPS in Obstructed GPS case 
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Drift Error % 

GPS 24.3m 6% 

LiDAR 7.5m 1.8% 

AEKF 3.42m 0.84% 

Table 2. Final position drift after 405 meters 

The second test is done with the UAV taking off and flying a box pattern over a flat moon like surface. 
The GPS position is show in Figure 7(a) and the LiDAR positon and point cloud is shown on the right. 
Both them are shown together in Figure 8(a) and their corresponding R measurement noise covariance is 
shown in Figure 8(b). In this open area the position reported by the GPS is much more accurate than the 
LiDAR SLAM algorithm. The small number of features seen by the LiDAR causes the ICP scan matching 
to be imprecise leading to a large increase in the R measurement noise covariance seen in Figure 8(b). 

(a) (b) 

Figure 7. (a) GPS position estimate and (b) LiDAR SLAM position estimate with corresponding point cloud 
map 

(a) (b) 

Figure 8. (a) LIDAR (Yellow), GPS (Red) and AKF (Green) position estimates and (b) R Measurement noise 
covariance matrix values over time for LIDAR and GPS for Minimal LIDAR returns case 

VII. Conclusion 

The results show that by fusing GPS data with a LIDAR in addition to an IMU, the state estimation of 
a UAV can be made more reliable in low altitude urban environment flights where GPS signals are degraded. 
Moreover, we propose a method to adapt the noise covariance matrix R online using both the dilution of 
precision (DOP) of the GPS and the LiDAR detected features count together with the scan match error. 
The results presented in this paper are our preliminary work, in the future we would like to explore adapting 
online both the process noise matrix Q and the noise covariance matrix as well as add a DGPS. 
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