National Aeronautics and Space Administration

Final

Third Five-Year Review Report

Goddard Space Flight Center Wallops Flight Facility Wallops Island, Virginia

February 2024

FINAL

THIRD FIVE-YEAR REVIEW REPORT

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GODDARD SPACE FLIGHT CENTER WALLOPS FLIGHT FACILITY WALLOPS ISLAND, VIRGINIA

SUBMITTED BY:

National Aeronautics and Space Administration Goddard Space Flight Center Wallops Flight Facility Building F-160, Room C167 Wallops Island, Virginia 23337

FEBRUARY 2024

EXECUTIVE SUMMARY

The National Aeronautics and Space Administration (NASA) conducted this Five-Year Review (FYR) for Goddard Space Flight Center, Wallops Flight Facility (WFF) located in Wallops Island, Virginia, as specified in Section VI(G)(5)(c) of the Administrative Agreement on Consent (AAOC) RCRA-03-2004-0201TH (EPA and NASA, 2004) for the WFF Environmental Compliance and Restoration (ECR) Program; Paragraph 70 of AAOC RCRA-03-2021-0022TH (EPA and NASA, 2021) for the WFF Formerly Used Defense Sites (FUDS); and, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 121. WFF is not on the National Priorities List (NPL); however, the more recent AAOC (EPA and NASA, 2021) incorporates the EPA Superfund Alternative approach into the agreement which allows for integration of NASA's CERCLA response obligations and RCRA corrective action obligations under the AAOCs without being formally listed on the NPL. This is the third FYR conducted at WFF by NASA under the AAOC. The first FYR was completed in 2013 the second FYR was completed in 2018 (NASA, 2014 and 2019b).

This report is consistent with the EPA (2001a) *Comprehensive Five-Year Review Guidance* and generally follows the EPA (2016) *Five-Year Review Recommended Template*. It summarizes the evaluation of remedies and remedial actions that resulted in hazardous substances, pollutants, or contaminants remaining at sites above levels that allow for unlimited use and unrestricted exposure (UU/UE), and for which there is a final Record of Decision (ROD). The following two AAOC sites require a CERCLA FYR:

- Operable Unit 2–Former Fire Training Area (FFTA)
- Operable Unit 3–Waste Oil Dump (WOD)

The objective of the FYR is to evaluate the effectiveness of the remedies to determine if these continue to be protective of human health and the environment in accordance with the requirements set forth in the RODs. In addition, FYR reports identify issues found during the review and document recommendations to address them. This evaluation was accomplished through a review of various reports and documents pertaining to post-remedy implementation activities, analytical data, and findings, and through site visits, interviews, and inspections. The community was notified of the review process through public notices. This report identifies circumstances that may prevent a particular remedy from functioning as designed or providing sufficient protection of human health and the environment. The overall evaluations of the effectiveness of each remedy are presented as protectiveness statements in the *Five-Year Review Summary Form* provided at the beginning of the report.

FFTA: The first FYR identified per- and polyfluoroalkyl substances (PFAS) as contaminants of emerging concern likely present at the FFTA based on historical site use and proximity to the airfield runway. Although no issues were identified for the Selected Remedy or COCs identified in the Record of Decision (ROD), this necessitated a protectiveness-deferred determination for the FFTA. The report recommended determining the presence of PFAS before the second FYR. Land Use Controls (LUCs) are in place preventing the use of site groundwater for drinking or other purposes. Groundwater samples were collected at FFTA in 2016; PFAS were detected at concentrations exceeding the available comparison values at that time. The protectiveness determination was deferred again in the second FYR due to the lack of regulatory criteria for PFAS. No other issues were identified for the remedy or COCs during the second FYR. A Preliminary Assessment (PA), Site Inspection (SI), and Expanded SI for PFAS at the Main Base (MB) have since been completed. The results indicate the presence of PFAS in site media (soil, groundwater, and

surface water) at the FFTA and in an adjacent drainage channel at concentrations above available comparison values, including EPA Regional Screening Levels (RSLs) and ecological screening values (ESVs). The Expanded SI Report recommended a multi-phase Remedial Investigation (RI) for PFAS, which will include human health and ecological risk assessments. PFAS were evaluated again in this FYR. The first phase of the RI was scoped in 2023 so additional data collection and the risk assessments have not been completed. Because there is no direct human health exposure and LUCs are maintained, a "short-term protective" determination has been made for the FFTA during this FYR. PFAS will be evaluated again in the next FYR, at which time the RI risk assessments are expected to be completed. Several long-term monitoring well integrity issues were identified at the FFTA during the current FYR, which will be addressed before the next LTM event. Arsenic and manganese remain at concentrations above cleanup levels in some wells, which will continue to be monitored over the next FYR period.

WOD: The first and second FYRs did not identify any issues for the WOD: The remedy at WOD was deemed protective. LUCs are in place preventing the use of site groundwater for drinking or other purposes and monitoring will continue. PFAS were detected in groundwater at the WOD during the PFAS SI since the second FYR. Therefore, PFAS were evaluated for the WOD in this FYR. The first phase of a multi-phase RI was scoped in 2023 so additional data collection and the risk assessments have not been completed. Because there is no direct human health exposure and LUCs are maintained, a "short-term protective" determination has been made for the WOD during this FYR. PFAS will be evaluated again in the next FYR, at which time the RI risk assessments are expected to be completed. Arsenic remains at concentrations above cleanup levels in some wells, which will continue to be monitored over the next FYR period.

FIVE-YEAR REVIEW SUMMARY FORM

SITE IDENTIFICATION					
Site Name: NASA W	NASA Wallops Flight Facility				
EPA ID: VA88000)10763				
Region: 3	State: VA	١	City/County: Wallops Island / Accomack County		
		SI	TE STATUS		
AAOC RCRA-03-2021-0 agreement which allows	NPL Status: To date this facility has not been proposed for NPL listing; however, the more recent 2021 AAOC RCRA-03-2021-0022TH incorporates the EPA Superfund Alternative approach into the agreement which allows for integration of NASA's CERCLA obligations and RCRA corrective action obligations under the AAOCs without being formally listed on the NPL.				
Multiple Operable Units Yes	Multiple Operable Units (OUs)?Has the site achieved construction completion?YesNo				
REVIEW STATUS					
Lead agency: Other Federal Agency If "Other Federal Agency" was selected above, enter Agency name: National Aeronautics and Space Administration (NASA)					
Author name (Federal or State Project Manager): David Liu, Project Coordinator					
Author affiliation: NASA, Environmental Compliance and Restoration Program					
Review period: January 2019 – December 2023					
Date of site inspection: May 17, 2023					
Type of review: Statutory					
Review number: 3					
Triggering action date: March 7, 2019					
Due date (five years after triggering action date): March 7, 2024					

FIVE-YEAR REVIEW SUMMARY FORM (continued)

Issues/Recommendations

OU(s) without Issues/Recommendations Identified in the Five-Year Review:

Both sites have issues and recommendations as noted below.

Issues and Recommendations Identified in the Five-Year Review:

OU(s): 2–Former	Issue Category: Cl	Category: Changed Site Conditions			
Fire Training Area (FFTA)	Issue: PFAS were detected in soil, groundwater, surface water, and sediment at concentrations exceeding the available comparison values (Environmental Protection Agency [EPA] Regional Screening Levels [RSLs], values derived from EPA RSL calculator, and most current and applicable ecological screening values [ESVs]).				
	Recommendation: NASA will conduct a multi-phase RI and work with EPA and VDEQ to determine the most appropriate path forward for the presence of PFAS at the FFTA.				
Affect Current Protectiveness	Affect FuturePartyOversight PartyMilestone DateProtectivenessResponsible			Milestone Date	
No	Yes	NASA	EPA/State	Final Phase 1 RI Work Plan by December 2025 (before next FYR)	

OU(s): 3–Waste	Issue Category: Changed Site Conditions			
Oil Dump (WOD)	Issue: PFAS were detected in groundwater at concentrations exceeding the available comparison values (EPA RSLs).			
	Recommendation: NASA will conduct a multi-phase RI and work with EPA and VDEQ to determine the most appropriate path forward for the presence of PFAS at the WOD.			
Affect Current Protectiveness	Affect FuturePartyOversight PartyMilestone DateProtectivenessResponsible			
No	Yes	NASA	EPA/State	Final Phase 1 RI Work Plan by December 2025 (before next FYR)

FIVE-YEAR REVIEW SUMMARY FORM (continued)

Protectiveness Statement(s)

The Protectiveness Statements for the Sites are summarized below.

<i>Operable Unit:</i>	Protectiveness Determination:	Planned Addendum Completion Date:
2–FFTA	Short-term Protective	N/A

Protectiveness Statement:

The remedy at FFTA currently protects human health and the environment because there is no direct exposure, LUCs are maintained, and post-closure groundwater monitoring is performed. RIs to evaluate risks are ongoing at the time of this review. In order for the remedy to be protective in the long-term, the following actions need to be taken (complete multi-phase PFAS RI including human health and ecological risk assessments for PFAS in soil, groundwater, surface water, and sediment) to ensure protectiveness.

Operable Unit:	Protectiveness Determination:	Planned Addendum Completion Date:
3–WOD	Short-term Protective	N/A

Protectiveness Statement:

The remedy at WOD currently protects human health and the environment because there is no direct exposure, LUCs are maintained, and post-closure groundwater monitoring is performed. RIs to evaluate risks are ongoing at the time of this review. In order for the remedy to be protective in the long-term, the following actions need to be taken (complete multi-phase PFAS RI including a human health risk assessment and potentially ecological risk assessment for PFAS in groundwater and potentially other media) to ensure protectiveness.

The signature below acknowledges NASA's review and acceptance of the enclosed Five-Year Review document findings for the Wallops Flight Facility Sites summarized herein. The findings of these Five-Year Reviews, acknowledged by this signature, are summarized in this Five-Year Review Summary Form, and are detailed in the pages that follow.

David A. Reth, Director Management Operations Goddard Space Flight Center Date

This page intentionally left blank

EXECI	JTIVE S	UMMARY	i
FIVE-Y	EAR RE	EVIEW SUMMARY FORM	iii
TABLE	OF CO	NTENTS	vii
ACRO	NYMS A	ND ABBREVIATIONS	ix
1.0	INTRO	DUCTION	.1-1
2.0	FIVE-Y	EAR REVIEW PROCESS	
	2.1	ADMINISTRATIVE COMPONENTS	
	2.2	COMMUNITY INVOLVEMENT	.2-1
3.0	BACK	GROUND INFORMATION	.3-1
	3.1	FACILITY PHYSICAL CHARACTERISTICS	.3-1
	3.2	LAND AND RESOURCE USE	
	3.3	BASE-WIDE INVESTIGATIONS	.3-2
	3.4	CLIMATE CHANGE	.3-2
4.0	EODM	ER FIRE TRAINING AREA	
4.0	4.1	ER FIRE TRAINING AREA	
	4.1	RESPONSE ACTION SUMMARY	
	4.2	Basis for Taking Action	
	4.2.1	Response Actions	
	4.2.3	Status of Implementation	
	4.3	PROGRESS SINCE THE LAST REVIEW	
	4.4	FIVE-YEAR REVIEW PROCESS	
	4.4.1	Community Involvement	
	4.4.2	Document Review	
	4.4.3	Data Review	
	4.4.4	Site Inspection	
	4.5	TECHNICAL ASSESSMENT	.4-5
	4.5.1	Question A: Is The Remedy Functioning As Intended By The Decision Documents?	.4-5
	4.5.2	Question B: Are The Exposure Assumptions, Toxicity Data, Clean-Up Levels, And RA	
		Used At The Time Of The Remedy Selection Still Valid?	.4-6
	4.5.3	Question C: Has Any Other Information Come To Light That Calls Into Question The Protectiveness Of The Remedy?	4-8
	4.5.4	Interview	
	4.6	ISSUES/RECOMMENDATIONS	4-8
	4.7	OTHER FINDINGS	
	4.8	PROTECTIVENESS STATEMENT	
	4.9	NEXT REVIEW	
5.0	WAST	E OIL DUMP	5-1
	5.1	SITE BACKGROUND	
	5.2	RESPONSE ACTION SUMMARY	
	5.2.1	Basis for Taking Action	
	5.2.2	Response Actions	
	5.2.3	Status of Implementation	
	5.3	PROGRESS SINCE THE LAST REVIEW	
	5.4	FIVE-YEAR REVIEW PROCESS	
	5.4.1	Community Involvement	.5-3
	5.4.2	Document Review	
	5.4.3	Data Review	.5-3

TABLE OF CONTENTS

6.0

5.4.4	Site Inspection	5-4
5.5	TECHNICAL ASSESSMENT	5-4
5.5.1	Question A: Is The Remedy Functioning As Intended By The Decision Documents?	5-4
5.5.2	Question B: Are The Exposure Assumptions, Toxicity Data, Clean-Up Levels, And RA	١Os
	Used At The Time Of The Remedy Selection Still Valid?	5-5
5.5.3	Question C: Has Any Other Information Come To Light That Calls Into Question The	
	Protectiveness Of The Remedy?	5-6
5.6	ISSUES AND RECOMMENDATIONS	5-7
5.7	OTHER FINDINGS	5-7
5.8	PROTECTIVENESS STATEMENT	5-7
5.9	NEXT REVIEW	5-7
REFE	RENCES	6-1

List of Appendices (Included electronically only)

- A Historical Analytical Data
- B Analytical Data Graphs
- C Site Photographs
- D Site Inspections and Interviews

List of Tables (Provided at end of document).

- 1-1 AAOC Areas of Concern
- 4-1 Chemicals of Concern–Former Fire Training Area
- 4-2 Chronology of Events–Former Fire Training Area
- 4-3 Summary of Implemented Institutional Controls–Former Fire Training Area
- 5-1 Chemicals of Concern–Waste Oil Dump
- 5-2 Chronology of Events–Waste Oil Dump
- 5-3 Summary of Implemented Institutional Controls–Waste Oil Dump

List of Figures (Provided at end of document)

- 1-1 Facility Location Map
- 1-2 Site Location Map
- 1-3 Public Notice of Start of Five-Year Review
- 4-1 Site Layout–Former Fire Training Area
- 4-2 September 2022 Cleanup Goal Exceedances–Former Fire Training Area
- 4-3 Groundwater and Surface Water PFOS Summary from Expanded SI–FFTA (PFAS Area 9)
- 4-4 Soil PFOS Summary from Expanded SI–FFTA (PFAS Area 9)
- 4-5 Soil and Sediment PFAS Summary from Expanded SI–FFTA (PFAS Area 9)
- 5-1 Site Layout–Waste Oil Dump
- 5-2 September 2022 Cleanup Goal Exceedances–Waste Oil Dump (September 2022)
- 5-3 Groundwater PFAS Analytical Results from SI–WOD

ACRONYMS AND ABBREVIATIONS

μg	Microgram(s)
µg/kg	Microgram(s) per kilogram
µg/L	Microgram(s) per liter
AFFF	Aqueous film forming foams
AOC	Area of Concern
AAOC	Administrative Agreement on Consent
ARAR	Applicable or Relevant and Appropriate Requirements
bgs	Below ground surface
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act of 1980
CFR	Code of Federal Regulations
COC	Chemical of Concern
DCE	Dichloroethene
ECR	Environmental Compliance and Restoration
EPA	U.S. Environmental Protection Agency
ESV	Ecological screening value
FAA	Federal Aviation Administration
FEMA	Federal Emergency Management Administration
FFTA	Former Fire Training Area
FMB	Facilities Management Branch
FS	Feasibility Study
FUDS	Formerly Used Defense Site
FYR	Five-Year Review
GIS	Geographic Information System
HHRA	Human health risk assessment
HI	Hazard index
HQ	Hazard quotient
IC	Institutional control
kg	Kilogram(s)
L	Liter
– LTM	Long-term monitoring
LUC	Land use control
MB	Main Base [parcel of WFF facility]
MCL	Maximum Contaminant Level
mg	Milligram(s)
mg/kg	Milligram(s) per kilogram
mg/L	Milligram(s) per liter
ML	Main Land [parcel of WFF facility]
msl	Mean sea level (above or with respect to)
NAAS	[Chincoteague] Naval Auxiliary Air Station
NACA	National Advisory Committee for Aeronautics
NASA	National Aeronautics and Space Administration
NCP	National Oil and Hazardous Substances and Contingency Plan (i.e., National
	Contingency Plan)
ng	Nanogram(s)
ng/L	Nanogram(s) per liter
NOAA	National Oceanic and Atmospheric Administration
	-

NPLNational Priorities ListNSZDNatural source zone depletionO&MOperation and maintenanceORPOxidation-reduction potentialOUOperable UnitPAPreliminary AssessmentPFASPer- and polyfluoroalkyl substancesPFBAPerfluorobutanoic acidPFDAPerfluorodocancia caidPFDAPerfluorodocancia caidPFDAPerfluorodocancia caidPFHAPerfluorohexanoic acidPFHAPerfluorohexanoic acidPFNAPerfluorononanoic acidPFDAPerfluorononanoic acidPFDAPerfluoropentanoic acidPFDAPerfluoropentanoic acidPFDAPerfluoropentanesuffonic acidPFDAPerfluoropentanesuffonic acidPFPAPerfluoropentanesuffonic acidPFPAPerfluoropentanesuffonic acidPFHASPerfluoropentanesuffonic acidPFTA or PFTetAPerfluorotetradecanoic acidPFUDAPerfluorotetradecanoic acidPFUAParts per trillionPRPPotentially Responsible PartyRACRRemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRemedial InvestigationRODRecord of DecisionRPMRegional Screening LevelSERDPSite Investigation or Site InspectionRSLRegional Screening LevelSERDPSite Investigation or Site InspectionRSLUnited StatesUSACEU. S. Army Corps of Engineers<	NPL N	
O&MOperation and maintenanceORPOxidation-reduction potentialOUOperable UnitPAPreliminary AssessmentPFASPer- and polyfluoroalkyl substancesPFBAPerfluorobutanoic acidPFDAPerfluorobutanosulfonic acidPFDAPerfluorobeptanoic acidPFDAAPerfluorobeptanoic acidPFHARPerfluoroheptanoic acidPFHARPerfluorohexanoic acidPFNAPerfluorononanoic acidPFNAPerfluorononanoic acidPFOAPerfluorononanoic acidPFOAPerfluoropentanoic acidPFNAPerfluoropentanoic acidPFPAPerfluoropentanesulfonic acidPFPAPerfluoropentanesulfonic acidPFPAPerfluoropentanesulfonic acidPFPAPerfluoropentanesulfonic acidPFTA or PFTetAPerfluorondecanoic acidPFTAPerfluorondecanoic acidPFTAPerfluorondecanoic acidPFTAPerfluorondecanoic acidPFTAPerfluorondecanoic acidPFTAPerfluorondecanoic acidPFTAPerfluorondecanoic acidPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial InvestigationRODRecord of DecisionRPMRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLTaegic Environmental Research and Development ProgramSI<		
ORPOxidation-reduction potentialOUOperable UnitPAPreliminary AssessmentPFASPer- and polyfluoroalkyl substancesPFBAPerfluorobutanoic acidPFDAPerfluorobutanesulfonic acidPFDAPerfluorobetanoic acidPFDAA or PFDoDAPerfluorobetanoic acidPFIASPerfluorobetanoic acidPFHAPerfluorobetanoic acidPFHAPerfluorobetanoic acidPFNAPerfluorobetanoic acidPFNAPerfluoroctanoic acidPFOAPerfluoroctanoic acidPFNAPerfluorobetanesulfonic acidPFPAPerfluorobetanesulfonic acidPFPAPerfluorobetanesulfonic acidPFPAPerfluoropetanesulfonic acidPFPAPerfluoropetanesulfonic acidPFPAPerfluorobetanesulfonic acidPFPAPerfluorobetanesulfonic acidPFTA or PFTetAPerfluoroteanesulfonic acidPFTA or PFTetAPerfluoroteanesulfonic acidPFTAPerfluoroteanesulfonic acidPFTPerfluoro		•
OUOperable UnitPAPreliminary AssessmentPFASPer- and polyfluoroalkyl substancesPFBAPerfluorobutanoic acidPFBSPerfluorodecanoic acidPFDAPerfluorodecanoic acidPFDAPerfluorodecanoic acidPFHAAPerfluorohexanoic acidPFHAAPerfluorohexanoic acidPFNAPerfluorohexanoic acidPFNAPerfluorohexanoic acidPFNAPerfluorononanoic acidPFOAPerfluorononanoic acidPFOSPerfluoropentanoic acidPFPSPerfluoropentanoic acidPFPAPerfluoropentanoic acidPFPAPerfluoropentanoic acidPFPAPerfluoropentanoic acidPFTA or PFTetAPerfluoropentanoic acidPFUA or PFUDAPerfluorotetradecanoic acidPFUA or PFUDAPerfluorotetradecanoic acidPFUA or PFUDAPerfluorotetradecanoic acidPFUA or PFUDAPerfluorotetradecanoic acidPFUAParts per trillionPRPPotentially Responsible PartyRACRRemedial Action ObjectiveRACRResource Conservation and Recovery Act of 1976RDRemedial InvestigationRODRecord of DecisionRPMRemedial InvestigationRODRecord of DecisionRPMSite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUnif		•
PAPreliminary AssessmentPFASPer- and polyfluoroalkyl substancesPFBAPerfluorobutanoic acidPFBAPerfluorobutanoic acidPFDAPerfluorodecanoic acidPFDAPerfluorobeptanoic acidPFDAPerfluoroheptanoic acidPFHAPerfluoroheptanoic acidPFHxAPerfluoroneptanoic acidPFHxAPerfluorononanoic acidPFNAPerfluorononanoic acidPFOSPerfluoroneptanoic acidPFOAPerfluoronotanoic acidPFOAPerfluoronotanoic acidPFPAPerfluoroneptanoic acidPFPAPerfluoropentanoic acidPFPAPerfluoropentanoic acidPFPAPerfluoroheptanesulfonic acidPFTAPerfluoroheptanesulfonic acidPFTAPerfluorotetradecanoic acidPFTAPerfluorotetradecanoic acidPFTDAPerfluorotetradecanoic acidPFTDAPerfluorotetradecanoic acidPFTDAPerfluorotetradecanoic acidPFTDAPerfluorotetradecanoic acidPRPPotentially Responsible PartyRACRResource Conservation and Recovery Act of 1976RDRemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRecord of DecisionRPMRemedial InvestigationRODRecord of DecisionRPMRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo		
PFASPer- and polyfluoroalkyl substancesPFBAPerfluorobutanoic acidPFBAPerfluorobutanoic acidPFDAPerfluorodecanoic acidPFDoA or PFDoDAPerfluoroheptanoic acidPFHxAPerfluoroheptanoic acidPFHxAPerfluorohexanoic acidPFNAPerfluorohexanoic acidPFNAPerfluoronexanoic acidPFNAPerfluoronexanoic acidPFNAPerfluorooctanoic acidPFOAPerfluoropetanoic acidPFOSPerfluoropetanoic acidPFPeRPerfluoropetanoic acidPFPAPerfluoropetanoic acidPFPAPerfluoropetanoic acidPFPAPerfluoropetanoic acidPFTAPerfluorotetradecanoic acidPFTAPerfluorotetradecanoic acidPFTAPerfluorotetradecanoic acidPFTDAPerfluorotetradecanoic acidPFTDAPerfluorotetradecanoic acidPfTDAPerfluoroundecanoic acidPfTAPerfluoroundecanoic acidPfTParts per trillionPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial InvestigationRODRecord of DecisionRPMRemedial InvestigationRODRecord of DecisionRPMRemedial Investigation or Site InspectionTBCToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUnited		•
PFBAPerfluorobutanoic acidPFBSPerfluorobutanesulfonic acidPFDAPerfluorodecanoic acidPFDAPerfluorodecanoic acidPFDAPerfluoroheptanoic acidPFHAAPerfluorohexanoic acidPFHXAPerfluorohexanoic acidPFNAPerfluorohexanoic acidPFNAPerfluorohexanoic acidPFNAPerfluorononanoic acidPFOAPerfluoropentanoic acidPFOSPerfluoropentanoic acidPFPAPerfluoropentanoic acidPFPAPerfluoropentanoic acidPFPAPerfluoropentanoic acidPFTA or PFTetAPerfluoropentanesulfonic acidPFTA or PFTetAPerfluorondecanoic acidPFTA or PFTDAPerfluorondecanoic acidPFTPerfluorondecanoic acidPFTPerfluorondecanoic acidPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial NestigationRCRAResource Conservation and Recovery Act of 1976RDRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project Plan <td></td> <td>•</td>		•
PFBSPerfluorobutanesulfonic acidPFDAPerfluorodecanoic acidPFDAPerfluoroheptanoic acidPFHyAPerfluoroheptanoic acidPFHxAPerfluorohexanoic acidPFHxAPerfluorononanoic acidPFNAPerfluorootanoic acidPFOAPerfluorootanoic acidPFOAPerfluorootanoic acidPFPAPerfluorootanoic acidPFPAPerfluoropentanoic acidPFPAPerfluoropentanoic acidPFPAPerfluoropentanoic acidPFTAPerfluoropentanoic acidPFTAPerfluoropentanoic acidPFTAPerfluoropentanoic acidPFTAPerfluoroteiradecanoic acidPFTAPerfluoroteiradecanoic acidPFTDAPerfluoroteiradecanoic acidPptParts per trillionPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRemedial InvestigationRDRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSINite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.Uniform Federal Policy for Quality Assurance Project PlanUSACEUnform Federal Policy for Quality Assurance Project Pla		
PFDAPerfluorodecanoic acidPFDoA or PFDoDAPerfluorohecanoic acidPFHpAPerfluorohexanoic acidPFHxAPerfluorohexanoic acidPFNAPerfluorononanoic acidPFNAPerfluorononanoic acidPFOAPerfluorooctanoic acidPFOAPerfluorooctanoic acidPFOAPerfluoropentanoic acidPFPAPerfluoropentanoic acidPFPAPerfluoropentanoic acidPFPAPerfluoropentanoic acidPFPAPerfluoropentanesulfonic acidPFTAPerfluorotetradecanoic acidPFTA or PFTetAPerfluorotetradecanoic acidPFTnDAPerfluorotetradecanoic acidPFUA or PFTetAPerfluorotidecanoic acidPFUA or PFTetAPerfluorotetradecanoic acidPFUAPerfluorotetradecanoic acidPFUAPerfluorotetradecanoic acidPFUAPerfluorotetradecanoic acidPFUAPerfluorotetradecanoic acidPFUAPerfluorotetradecanoic acidPFUAPerfluorotetradecanoic acidPFUAPerfluorotetradecanoic acidPFUAPerfluorotetradecanoic acidPRPotentially Responsible PartyRACRRemedial Action Completion ReportRACRRemedial Action ObjectiveRACRRemedial InvestigationRODRecord of DecisionRPMRemedial InvestigationRDRemedial Investigation or Site InspectionRBLSite Investigation or Site InspectionSIENoise Substances Control ActU.S. <td></td> <td></td>		
PFDoA or PFDoDAPerfluorodoecanoic acidPFHpAPerfluorohexanoic acidPFHxAPerfluorohexanosi acidPFHxAPerfluoronanoic acidPFNAPerfluorooctanoic acidPFOAPerfluoropentanoic acidPFOAPerfluoropentanoic acidPFPAPerfluoropentanoic acidPFPAPerfluoropentanosulfonic acidPFPAPerfluoropentanosulfonic acidPFPAPerfluoropentanosulfonic acidPFTAPerfluoropentanosulfonic acidPFTAPerfluorohetanesulfonic acidPFTAPerfluorohetanesulfonic acidPFTAPerfluorohetanesulfonic acidPFTAPerfluorohetanesulfonic acidPFTAPerfluorohetanesulfonic acidPFTDAPerfluorohetanesulfonic acidPFTDAPerfluorohetanesulfonic acidPFTDAPerfluorohetanesulfonic acidPFTAPerfluorohetanesulfonic acidPFTAPerfluorohetanesulfonic acidPFTAPerfluorohetacanoic acidPFTAPerfluorohetacanoic acidPFTAPerfluorohetacanoic acidPFTAPerfluorohetacanoic acidPRPerfluorohetacanoic acidRACR <td></td> <td></td>		
PFHpAPerfluoroheptanoic acidPFHxAPerfluoroheptanoic acidPFHxAPerfluoroheptanoic acidPFNAPerfluoroctanoic acidPFOAPerfluoroctanoic acidPFOAPerfluoroctanesulfonic acidPFOSPerfluoropentanoic acidPFPeAPerfluoropentanoic acidPFPeAPerfluoropentanosic acidPFPeAPerfluoropentanesulfonic acidPFTA or PFTetAPerfluorotetradecanoic acidPFTDAPerfluorotetradecanoic acidPFTDAPerfluorotetradecanoic acidPFTDAPerfluorotetradecanoic acidPFTA or PFTetAPerfluorotetradecanoic acidPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRemedial InvestigationRODRecord of DecisionRPMRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.Uniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUV/UEUnimited use and unrestricted exposureVCVinginia Department of Environmental Quality </td <td></td> <td></td>		
PFHxAPerfluorohexanoic acidPFHxSPerfluorohexanesulfonic acidPFNAPerfluoronanoic acidPFOAPerfluoroctanoic acidPFOSPerfluoroctanesulfonic acidPFPeAPerfluoropentanoic acidPFPeSPerfluoropentanoic acidPFHsPerfluoropentanoic acidPFTaXPerfluoropentanesulfonic acidPFTaYPerfluorotetradecanoic acidPFTaYPerfluorotetradecanoic acidPFTnDAPerfluorotetradecanoic acidPFTnDAPerfluorotetradecanoic acidPFTnDAPerfluorotetradecanoic acidPFTParts per trillionPRPPats per trillionPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial DesignRIRemedial InvestigationRODRecource Conservation and Recovery Act of 1976RDRedial DesignRIRemedial InvestigationRODRecord of DecisionRPMSite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnified use and unrestricted exposureVCVinyl chlorideVDDWaste Oil DumpWFFWallops Flight Facility<		
PFHxSPerfluorohexanesulfonic acidPFNAPerfluorocanoic acidPFOAPerfluorocanoic acidPFOAPerfluorocanoic acidPFPAPerfluoropentanoic acidPFPeAPerfluoropentanesulfonic acidPFPAPerfluoroheptanesulfonic acidPFTAPerfluoroheptanesulfonic acidPFTAPerfluoroheptanesulfonic acidPFTA or PFTetAPerfluoroheptanesulfonic acidPFTnDAPerfluoroheptanesulfonic acidPFTrDAPerfluoroheptanesulfonic acidPFUNA or PFUDAPerfluoroundecanoic acidPFTRPetfluorolmecanoic acidPFTRPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRemedial DesignRIRemedial InvestigationRDRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPSite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEVinginia Department of Environmental QualityWODWaste Oil Dump <td>•</td> <td>•</td>	•	•
PFNAPerfluoronanoic acidPFOAPerfluoroctanoic acidPFOSPerfluoroctanesulfonic acidPFPeAPerfluoropentanoic acidPFPeAPerfluoropentanosulfonic acidPFPeSPerfluoroheptanesulfonic acidPFTAPerfluoroheptanesulfonic acidPFTAPerfluorotetradecanoic acidPFTDAPerfluorotetradecanoic acidPFTDAPerfluorotetradecanoic acidPFUnA or PFUDAPerfluoroundecanoic acidPFUNAPerfluoroundecanoic acidPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRACRResource Conservation and Recovery Act of 1976RDRemedial InvestigationRDRemedial DesignRIRemedial Project ManagerRSLRegional Screening LevelSERDPStategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCToxic Substances Control ActUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnimited use and unrestricted exposureVCVing Ininia Department of Environmental QualityWODWaste oil DumpWFFWallops Flight Facility		
PFOAPerfluorooctanoic acidPFOSPerfluorooctanesulfonic acidPFPeAPerfluoropentanoic acidPFPeSPerfluoropentanesulfonic acidPFHpSPerfluoroheptanesulfonic acidPFTA or PFTetAPerfluoroheptanesulfonoic acidPFTnDAPerfluorotidecanoic acidPFUDA or PFUDAPerfluoroundecanoic acidpptParts per trillionPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial DesignRIRemedial InvestigationRODRecord of DecisionRPMStelenial InvestigationRODRecord of DecisionRSLRegional Screening LevelSERDPSite Investigation or Site InspectionSISite Investigation or Site InspectionTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVingl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility	PFHxS P	Perfluorohexanesulfonic acid
PFOSPerfluorooctanesulfonic acidPFPeAPerfluoropentanoic acidPFPeSPerfluoropentanesulfonic acidPFHpSPerfluoroheptanesulfonic acidPFThA or PFTetAPerfluorotertadecanoic acidPFTrDAPerfluorotertadecanoic acidPFUnA or PFUDAPerfluoroundecanoic acidpptParts per trillionPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial DesignRIRemedial InvestigationRDRecord of DecisionRDRecord of DecisionRSLRegional Screening LevelSERDPSite Investigation or Site InspectionSISite Investigation or Site InspectionTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUSACEU.S. Army Corps of EngineersUSACEUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnimited use and unrestricted exposureVCVing Ininia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility	PFNA P	Perfluorononanoic acid
PFPeAPerfluoropentanoic acidPFPeSPerfluoropentanesulfonic acidPFHpSPerfluoroheptanesulfonoic acidPFTA or PFTetAPerfluorotetradecanoic acidPFTrDAPerfluorottridecanoic acidPFUnA or PFUDAPerfluoroundecanoic acidpptPatts per trillionPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnimited use and unrestricted exposureVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility	PFOA P	Perfluorooctanoic acid
PFPeSPerfluoroneptanesulfonic acidPFHpSPerfluoroneptanesulfonoic acidPFTA or PFTetAPerfluorotetradecanoic acidPFTrDAPerfluoroundecanoic acidPFUnA or PFUDAPerfluoroundecanoic acidpptParts per trillionPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPSite Investigation or Site InspectionSISite Investigation or Site InspectionTBCTo-be-consideredTSCAU.S. Army Corps of EngineersUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinglina Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility	PFOS P	Perfluorooctanesulfonic acid
PFHpSPerfluoroheptanesulfonoic acidPFTA or PFTetAPerfluorotetradecanoic acidPFTrDAPerfluorotridecanoic acidPFUnA or PFUDAPerfluoroundecanoic acidpptParts per trillionPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRemedial InvestigationRDRemedial InvestigationRODRecord of DecisionRSLRegional Screening LevelSERDPStategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAUnited StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUndeground storage tankUU/UEUnlimited use and unrestricted exposureVCVingina Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility	PFPeA P	Perfluoropentanoic acid
PFTA or PFTetAPerfluorotetradecanoic acidPFTrDAPerfluorotridecanoic acidPFUnA or PFUDAPerfluoroundecanoic acidpptParts per trillionPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVing chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility	PFPeS P	Perfluoropentanesulfonic acid
PFTrDAPerfluorotridecanoic acidPFUnA or PFUDAPerfluoroundecanoic acidpptParts per trillionPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility	PFHpS P	Perfluoroheptanesulfonoic acid
PFUnA or PFUDAPerfluoroundecanoic acidpptParts per trillionPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility	PFTA or PFTetA P	Perfluorotetradecanoic acid
pptParts per trillionPRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRemedial DesignRIRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility	PFTrDA P	Perfluorotridecanoic acid
PRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial Action ObjectiveRCAResource Conservation and Recovery Act of 1976RDRemedial DesignRIRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility	PFUnA or PFUDA P	Perfluoroundecanoic acid
PRPPotentially Responsible PartyRACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRemedial DesignRIRemedial DesignRIRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility	ppt P	Parts per trillion
RACRRemedial Action Completion ReportRAGSRisk Assessment Guidance for SuperfundRAORemedial Action ObjectiveRCAResource Conservation and Recovery Act of 1976RDRemedial DesignRIRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		Potentially Responsible Party
RAGSRisk Assessment Guidance for SuperfundRAORemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRemedial DesignRIRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility	RACR R	Remedial Action Completion Report
RAORemedial Action ObjectiveRCRAResource Conservation and Recovery Act of 1976RDRemedial DesignRIRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		
RCRAResource Conservation and Recovery Act of 1976RDRemedial DesignRIRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		•
RDRemedial DesignRIRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		-
RIRemedial InvestigationRODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		•
RODRecord of DecisionRPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		•
RPMRemedial Project ManagerRSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		
RSLRegional Screening LevelSERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		
SERDPStrategic Environmental Research and Development ProgramSISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		
SISite Investigation or Site InspectionTBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		
TBCTo-be-consideredTSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		
TSCAToxic Substances Control ActU.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		-
U.S.United StatesUSACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility	-	
USACEU.S. Army Corps of EngineersUFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		
UFP-QAPPUniform Federal Policy for Quality Assurance Project PlanUSTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		-
USTUnderground storage tankUU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		
UU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		
VCVinyl chlorideVDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		o o
VDEQVirginia Department of Environmental QualityWODWaste Oil DumpWFFWallops Flight Facility		
WODWaste Oil DumpWFFWallops Flight Facility		•
WFF Wallops Flight Facility		
		•
, u J		יימווטףא ואמווע נףמוכפו טו יידרן

1.0 INTRODUCTION

The purpose of a five-year review (FYR) is to evaluate the implementation and performance of remedies to determine if the remedies are and will continue to be protective of human health and the environment. The methods, findings, and conclusions of reviews are documented in FYR reports. In addition, FYR reports identify issues found during the review and document recommendations to address them. The National Aeronautics and Space Administration (NASA) performed this FYR pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 121, as amended, consistent with the National Contingency Plan (NCP) (Title 40 of the Code of Federal Regulations [CFR] Section 300.430[f][4][ii]), and considering United States (U.S.) Environmental Protection Agency (EPA) policy. The report was prepared in accordance with EPA's (2001a) *Comprehensive Five-Year Review Guidance*. NASA is the potentially responsible party (PRP) for the subject sites in the FYR.

This is the third FYR for NASA Goddard Space Flight Center's Wallops Flight Facility (WFF) located in Wallops Island, Virginia (Figure 1-1). WFF has not been officially proposed for addition to the National Priorities List (NPL). The most recent Administrative Agreement on Consent (AAOC) RCRA-03-2021-0022TH (EPA and NASA, 2021) incorporates the EPA Superfund Alternative approach into the agreement which allows for integration of NASA's CERCLA response obligations and RCRA corrective action obligations under the AAOCs without being formally listed on the NPL. The triggering action for this statutory review is the completion of the previous FYR (NASA, 2019b). The FYR has been prepared because hazardous substances, pollutants, or contaminants remain at the facility above levels that allow for unlimited use and unrestricted exposure (UU/UE).

Two sites under the AAOC require a CERCLA FYR: The Former Fire Training Area (FFTA) and the Waste Oil Dump (WOD) (Figure 1–2). Other environmental restoration sites or Areas of Concern (AOCs) at the facility (see Table 1–1) are not included in the FYR, because they are still under investigation or have been closed out under the AAOCs, or they are under other regulatory programs (e.g., Virginia's underground storage tank [UST] program) (NASA, 2023i).

The FYR was led by David Liu, the NASA Project Coordinator for the WFF Environmental Compliance and Restoration (ECR) Program. Participants included Lorie Baker, the Remedial Project Manager (RPM) for EPA, Kyle Newman, the RPM for Virginia Department of Environmental Quality (VDEQ), and NASA contractor participants from Tetra Tech. They are referred to collectively in this report as the RPM Team. The regulatory agencies were notified of the initiation of the FYR in January 2023 during an RPM meeting associated with the AAOC sites. The review began on January 30, 2023, and evaluates the data collected between December 2017 and December 2022.

This page intentionally left blank

2.0 FIVE-YEAR REVIEW PROCESS

2.1 ADMINISTRATIVE COMPONENTS

The EPA and VDEQ were notified in January 2023 about the initiation of the FYR process, which includes data and document reviews as well as site inspections and interviews. The NASA Project Coordinator assisted with the review as the base representative. The EPA and the VDEQ assisted with the review as the support agencies' representatives.

Site-specific FYR evaluations are presented in Section 4.0 for the FFTA and Section 5.0 for the WOD. FYR process components include the following:

- Community involvement
- Document review
- Data review
- Site inspection
- Interviews

2.2 COMMUNITY INVOLVEMENT

A public notice was posted in the Eastern Shore Post on February 24, 2023, to notify the public that this FYR had been initiated (see Figure 1-3). There were no public responses or inquiries for interviews. A notice will be posted to announce the completion of the FYR Report and that the review and report results will be available to the public on the WFF restoration program website and at the following locations. The Administrative Record for WFF is also available at these locations. A copy of the FYR Report will be provided to the Federally Recognized Tribes in Virginia and the Catawba Indian Nation.

Eastern Shore Public Library	Island Library
23610 Front St	4077 Main St
Accomac, Virginia 23301	Chincoteague, Virginia 23336
757-787-3400	757-336-3460

This page intentionally left blank

3.0 BACKGROUND INFORMATION

3.1 FACILITY PHYSICAL CHARACTERISTICS

WFF is in Accomack County, Virginia, and consists of three land parcels: Main Base (MB), Mainland (ML), and Wallops Island (WI) (Figure 1–1). The MB is comprised of 1,927 acres located near the intersection of Virginia Routes 798 and 175. The ML is located about 6 miles to the south of the MB on Virginia Route 679 and consists of 1,207 acres containing about 100 acres of usable land; the remaining acreage is marshland. The ML parcel is connected to the WI parcel by a causeway constructed in 1960. The WI parcel is a 7-mile-long 3,395-acre barrier island.

NASA, and its predecessor organization, the National Advisory Committee for Aeronautics (NACA), have had a presence at WFF since 1945. NACA commenced operations on the southern portion of WI in 1945 launching its first rocket during that year. In 1946, NACA constructed launch and radar support and experimental facilities. NASA was officially created by the federal government in 1958. In 1959, NASA expanded its presence at WFF with the lease of the MB from the Navy on June 30, 1959, and the acquisition of the ML. NASA formally acquired the MB from the Navy on December 1, 1961. The Navy operated the Chincoteague Naval Auxiliary Air Station (NAAS) at the MB from 1942 until 1959, when NASA acquired the facility. The Navy took control of the MB in 1942 and in 1943 constructed runways, buildings, and other support facilities for naval aviation and aviation ordnance testing and training. The Navy conducted pilot training and aviation and ordnance testing at the facility until the base was closed in 1959 (Occu-Health, 1999; USACE, 2000).

NASA continues to maintain the runways constructed at the facility by the Navy and occupies many of the structures and buildings that were present at the time of the property transfer. In addition, NASA has expanded and constructed additional buildings within the WFF area to support their mission and to provide support to other tenant organizations. NASA constructed the causeway that connects the ML to WI in 1960.

3.2 LAND AND RESOURCE USE

The mission of WFF has undergone several changes since it was established by NASA in 1959, but the main focus has been and continues to be rocket research, the management of suborbital projects, suborbital and orbital tracking, aeronautical research, and space technology research. NASA does not manufacture rockets or rocket fuels/propellants at WFF. Rocket motors are transported to the WFF from other facilities.

The facility maintains operational launch range and airfield capabilities to meet ongoing and emerging needs in the science, aerospace, defense, and commercial industries. In addition, Wallops is a multi-user/multi-tenant facility that supports satellite tracking and commanding, military operations and training, scientific investigations, technology development and testing, as well as commercial aerospace. The facility's diverse mission sets and on-site partners include the U.S. Navy, National Oceanic and Atmospheric Administration (NOAA), the Federal Aviation Administration (FAA), Virginia Space, and the Mid-Atlantic Regional Spaceport.

WFF is one of the major employers in Accomack County and employs a number of highly educated and trained engineers, research scientists, and technicians. Tourism, mainly on Chincoteague and Assateague Islands, and agriculture are the other major economic sectors within Accomack County. The immediate community around WFF includes residential areas, large farms, and a large campground surrounding the various WFF land parcels. Drinking water at NASA WFF and nearby Town of Chincoteague is obtained

from a series of production wells which are screened in the middle Yorktown-Eastover Aquifer. These production wells and the finished drinking water are routinely sampled and analyzed for potential contaminants, including per- and polyfluoroalkyl substances (PFAS).

3.3 BASE-WIDE INVESTIGATIONS

Base-wide Preliminary Assessments (PAs) and Site Inspections/Investigations (SIs) have been performed since the 2018 FYR on MB and WI for PFAS. PFAS investigations (including Remedial Investigations [RIs]), monitoring activities, and mitigation efforts at the facility are ongoing at the time of this third FYR. The following media have been characterized or monitored for PFAS: Drinking water, soil, groundwater, surface water, sediment, wastewater, and biosolids. The specifics of PFAS investigations at the facility thus far can be found in the following documents:

PFAS Source Area Investigations

- MB
 - Groundwater Investigation for PFAS at FFTA (NASA, 2016 and 2017c)
 - 2017 PFAS Sampling (2017a, 2017b, 2017d, and 2017e)
 - PA/SI for PFAS at MB (2019c and 2020)
 - ESI for PFAS at MB (2021d and 2023f)
 - Runway 4-22 Aqueous Film Forming Foam (AFFF) Response Area Investigation (2023a)
- WI
 - PA/SI for PFAS at WI (2021f and 2023g)
 - Launch Pad 0-B Expansion Area Investigation (2023e)
- MB and WI
 - SI Addendum for PFAS (2021c)

PFAS Monitoring Programs on Main Base

- 2017 PFAS Sampling (2017b and 2017d)
- 2018 to 2021 PFAS Sampling Annual Reports (2019e, 2021a, 2022b, and 2023d)
- Perimeter Monitoring Well Installation and PFAS Sampling (2017d and 2019a)
- Production Well Aquifer Testing (2017f and 2019a)
- PFAS Sampling Work Plans (2022a and 2023h)

In addition, PFAS treatability studies and pilot studies are ongoing internal to NASA.

The documents detailing these PFAS investigation were generated in general accordance with the Uniform Federal Policy for Quality Assurance Project Plan (UFP-QAPP) (NASA, 2021e) and UFP-QAPP Revision-1 (NASA, 2023h).

3.4 CLIMATE CHANGE

Facilities in coastal areas prone to flooding are dealing with or will be dealing with changes in climate that may impact their readiness capabilities and infrastructure resilience. EPA Region 3 climate change impacts of higher temperatures, increases in precipitation events, and sea level rise need to be considered when assessing the current and future success of remedies. Region 3 has Geographic Information System (GIS) web application tools and files that combine data on Superfund Site locations with sea level rise and storm

surge data from NOAA, as well as flooding data from Federal Emergency Management Agency (FEMA) and the Nature Conservancy (Active Waters).

The current FYR sites do not have actively powered remediation systems in need of climate resilience. That is, there are no active recirculation systems or other powered remedies (e.g., soil vapor extraction) in operation at the FFTA or WOD. Monitoring wells are inspected regularly as part of typical operation and maintenance (O&M) and land use control (LUC) inspections. Higher temperatures and droughts can negatively impact vegetation. However, this does not affect remedy protectiveness at the current FYR sites, both of which have in situ groundwater remedies in the long-term monitoring (LTM) stage.

Climate change impacts are discussed under Question C in the technical assessment for each of the FFTA and WOD sites (see Sections 4.5.3 and 5.5.3, respectively). The FFTA and WOD sites' elevations are above that which will be affected by sea level rise or storm surges in the coming decades. The in situ groundwater remedies in place at the FFTA and WOD would not be impacted by periodic flooding. Vegetative covers are not a component of the groundwater remedies at the FFTA and WOD, so higher temperatures and droughts would not affect remedy protectiveness at the sites.

This page intentionally left blank

4.0 FORMER FIRE TRAINING AREA

4.1 SITE BACKGROUND

FFTA is located along Runway 10–28 in the northern portion of the MB (Figure 4-1). The site was used by NASA for firefighter training exercises circa 1965 to 1987. It is reported that flammable liquids were dispersed onto the ground, into a pit, onto an abandoned plane fuselage, and/or into a tank and ignited for these exercises. Petroleum-contaminated soils were excavated and removed from the site by NASA in 1986 because of a removal order from VDEQ (NASA, 2022d). The area was identified as an AOC because of the site use history as well as visible staining.

FFTA is an open grass field and is no longer used for firefighter training. The FFTA is not used for any specific purpose, and there are no plans for residential development of the site. No change in the use of the site is likely because it is adjacent to an active runway, which is an important part of NASA's and other WFF tenants' mission. Shallow groundwater flows northeast and east through the site. Shallow groundwater is not used by NASA for any purpose other than environmental monitoring and there are no plans for the development of this resource for potable use in the future. Residential development of FFTA and exposure to groundwater are restricted as required by the Record of Decision (ROD) (Tetra Tech, 2007c). Effective implementation of the institutional controls (ICs) by the LUC Remedial Design (RD) prevents site development and exposure to site groundwater (Tetra Tech, 2008c).

The Town of Chincoteague shallow and deep groundwater supply wells are located more than 4,500 feet east (hydraulically side-gradient) of the FFTA-impacted shallow groundwater. The four active, deep production wells for WFF are located more than 2,500 feet south (hydraulically upgradient) of FFTA.

4.2 RESPONSE ACTION SUMMARY

4.2.1 Basis for Taking Action

Action was needed at FFTA to mitigate human health risks from exposure to Chemicals of Concern (COCs) in groundwater. The COCs were identified initially by the baseline human health risk assessment (HHRA) in the Supplemental RI Report (Tetra Tech, 2004b). The cleanup goals were developed in the Tetra Tech (2005a) Feasibility Study (FS) and finalized in the (2007c) ROD. There are no COCs associated with ecological risk at FFTA. The groundwater to surface water pathway was evaluated during the RI. COCs were identified in groundwater based on hypothetical future residential exposure to groundwater via ingestion, dermal contact, or inhalation. No action was required for other media. The COCs in groundwater are benzene, cis-1,2-dichloroethene (DCE), vinyl chloride (VC), 4-methylphenol, naphthalene, arsenic, and manganese (Table 4-1). A chronology of events for the FFTA is presented in Table 4-2.

4.2.2 <u>Response Actions</u>

Prior to the ROD (and any CERCLA response), approximately 120 cubic yards of petroleum-contaminated soils were excavated and removed from the site by NASA in 1986 because of a removal order from VDEQ under the UST Program (NASA, 2022d).

4.2.2.1 Remedial Action Objectives

Based on the evaluation of site conditions, an understanding of the contaminants, the physical properties in media of concern, the results of risk assessments, and an analysis of applicable or relevant and

appropriate requirements (ARARs), the following remedial action objectives (RAOs) were finalized in the ROD for FFTA:

- Prevent the exposure to and use of the contaminated groundwater at the FFTA, which presents an unacceptable risk associated with the hypothetical future resident use of shallow groundwater.
- Restore impacted groundwater at the FFTA to drinking water standards and attain cleanup levels established in the ROD.

No RAO was developed specific to soil vapor or potential vapor intrusion issues at the time of the FS and ROD. See Section 4.5.2 for a discussion of potential vapor intrusion at FFTA.

4.2.2.2 Remedy Components

The selected remedy for FFTA consists of the following components:

- In-Situ Biological Treatment (Biostimulation) via injection
- Institutional Controls / LUCs
- Long-term groundwater monitoring

The COCs and associated cleanup levels from the ROD are provided in Table 4-1.

4.2.3 <u>Status of Implementation</u>

The remedial action has been fully implemented. The Pilot Study Work Plan was finalized and approved in 2008 (Tetra Tech, 2008a). The pilot study conducted in December 2008 involved injections of biostimulation substrate within the contaminant plume area and performance monitoring. The monitoring results were presented in the Pilot Study Report for FFTA (Tetra Tech, 2009b). Concentrations were reduced within the plume area sufficiently such that EPA and VDEQ concurred that full-scale implementation of biostimulation was not necessary. Groundwater performance monitoring was initiated in August 2009 and the LTM program was approved and implemented in 2010 (Tetra Tech, 2010c). Groundwater LTM is ongoing. LUCs were implemented in 2008 (Tetra Tech, 2008c). The Remedial Action Completion Report (RACR) documenting that all components of the remedy were implemented and functioning was finalized in 2011 (Tetra Tech, 2011a).

4.2.3.1 Institutional Controls (ICs)

The LUC boundary within which ICs are enforced at FFTA is shown on Figure 4-1. The ICs for FFTA are linked to the restricted area and are included in the Facilities Master Plan and Tool used by the WFF Facilities Management Branch (FMB). The FMB reviews the Tool to issue dig permits and review/evaluate proposed land use activities. The IC objectives from the LUC RD are listed in Table 4-3. LUC inspections are performed annually by NASA. The restrictions will remain in place until concentrations of hazardous substances in shallow groundwater are reduced to allow for UU/UE.

4.2.3.2 Systems Operation & Maintenance (O&M)

NASA currently performs groundwater LTM sampling activities for FFTA. LTM events occur every 15 months at the time of this FYR. Contractors evaluate the data, document LTM activities, and provide the reports to NASA, EPA, and VDEQ. The LTM Program (e.g., sampling analyses, frequency, and wells) is updated as needed by NASA with concurrence from EPA and VDEQ. See Section 4.4.3–Data Review for additional information regarding groundwater monitoring at FFTA.

4.3 PROGRESS SINCE THE LAST REVIEW

This is the third FYR report for FFTA. No substantive issues were identified during the site inspection during the previous FYR. The 2013 and 2018 FYRs identified the presence of PFAS at the site and deferred protectiveness for additional data collection and until promulgated criteria are available. EPA has published Regional Screening Levels (RSLs) for six PFAS since the 2018 FYR through May 2023 (i.e., preparation of current FYR), and Maximum Contaminant Levels (MCLs) for PFAS are expected to be finalized in fiscal year 2024.

Additional PFAS sampling has occurred since the 2018 FYR, including a PA/SI (NASA, 2019c, 2020, and 2021c) and Expanded SI (2021d and 2023f). The FFTA area is referred to as PFAS "Area 9" in the SI and Expanded SI. The SI and Expanded SI included soil, sediment, surface water (including seeps), and groundwater sampling for PFAS. See data review discussion in Section 4.4.3. The report recommended performing a multi-phase RI for PFAS to further evaluate the extent of PFAS in soil and groundwater at the FFTA, further evaluate the groundwater to surface water pathway in an adjacent drainage channel, and to perform human health and ecological risk assessments. Treatability studies are also being implemented at the FFTA to evaluate the effectiveness of various treatment media to remove PFAS from aqueous and solid matrices. A pre-design investigation was conducted to provide high-resolution data that was used to design a pump test and treatability study for PFAS-containing groundwater, the results of which will be included in the forthcoming PFAS RI work plan. Additionally, a seep treatment system was constructed and began operating in June 2022. A list of all PFAS investigations and efforts at WFF is provided in Section 3.3.

Starting with the June 2010 LTM Event, 24 groundwater LTM events have taken place since the implementation of the remedy. Five of these sampling events were completed since the previous FYR. (The March 2018 LTM Event report was not prepared until after the 2018 FYR).

- March 2018 LTM Event (NASA, 2018b)
- December 2018 LTM Event (NASA, 2019d)
- July 2020 LTM Event (NASA, 2021b)
- June 2021 LTM Event (NASA, 2022c)
- September 2022 LTM Event (NASA, 2023c)

Groundwater samples are analyzed for the COCs from the ROD; however, the analytes and sample frequency have been reduced significantly by the RPM Team based on concentration trends since LTM began. LUC inspections occur annually to evaluate site conditions and the monitoring wells. Groundwater LTM results are discussed further in Section 4.4.3.

4.4 FIVE-YEAR REVIEW PROCESS

4.4.1 <u>Community Involvement</u>

As indicated in Section 2.2, a public notice was posted in the Eastern Shore Post on February 24, 2023, to notify the public that this FYR had been initiated (Figure 1-3). A notice will be posted to announce the completion of the FYR Report and that the review and report results will be available to the public. A copy of the FYR Report will be provided to the Federally Recognized Tribes in Virginia and the Catawba Indian Nation.

4.4.2 Document Review

The FYR includes a review of relevant documents. Historical documents for the FFTA are referenced in Table 4-1 with full citations in Section 6.0. All LTM work plans and reports (data reports and LUC inspection reports) are available in the Administrative Record (post-ROD) file.

4.4.3 Data Review

LTM groundwater data have been collected since the implementation of the remedial action. The monitoring locations and constituents were identified in the ROD as part of the Performance Standards. The ROD also required the preparation of an LTM Plan. An LTM Plan was developed in 2010 to comply with the groundwater monitoring requirements specified in the ROD. Revised LTM Plans were issued in 2012 (Tetra Tech, 2012e), 2014 (2014a), 2015 (2015e), and 2022 (NASA 2022d) to optimize the LTM Program. Optimization included removing wells and monitoring parameters from the LTM Program and changing LTM event frequency considering performance monitoring results.

The current groundwater monitoring program at FFTA consists of the analysis of naphthalene, total and dissolved arsenic, and total and dissolved manganese in seven monitoring wells. The RPM Team removed cis-1,2-DCE and VC analysis in 2013, benzene in 2018, and 4-methylphenol in 2021. In addition, the LTM wells to be sampled have been reduced to seven, and LTM sampling frequency is now once every 15 months. The LTM groundwater data collected since the previous FYR (i.e., March 2018, December 2018, July 2020, June 2021, and September 2022) are presented in Table A-1 screened against cleanup levels. PFAS soil, sediment, surface water, and groundwater data from the PFAS SI and Expanded SI are presented in Table A-2.

Each LTM event includes groundwater level gauging and sampling monitoring wells specific to the LTM Program. An isoconcentration contour figure showing COC exceedances of cleanup levels for the most recent LTM event in September 2022 is provided as Figure 4-2. The analytical data are compared to cleanup levels for each LTM event in Table A-1. A groundwater elevation contour map for September 2022 is also provided in Appendix A. Temporal analytical data trend graphs for the COCs are provided in Appendix B.

Compared to the site conditions prior to the biostimulation injection in 2008, the maximum concentrations of benzene, 4-methyphenol, naphthalene, and manganese have decreased, and the contaminant plumes have decreased in size. Concentrations of arsenic, manganese, and naphthalene remain above the cleanup goals. The exceedances are limited to the central portion of the site where aquifer conditions appear to still be reducing based on oxidation-reduction potential (ORP) ranges (-55 to -166 millivolts since the last FYR). Several wells were noted to have obstructions and sediment accumulation in the September 2022 LTM Event Report. The report recommended that certain wells be rehabilitated (i.e., developed) or abandoned and reinstalled before the next LTM event in December 2023.

Free product was detected in MW055S (0.13 feet thick) and MW101S (0.76 feet thick) during the October 2022 follow-up LTM event reported in the September 2022 LTM Event Report. December 2015 was the last LTM event that free product was detected (in well MW101S). Free product at the FFTA does not appear to be mobile and is thought to have only accumulated in MW055S and MW101S during periods when the groundwater table is unusually low or experiencing a significant and sustained drop. The report recommended free product monitoring and recovery in these wells and evaluating natural source zone depletion (NSZD) to determine whether the criteria provided in VDEQ's (2012) Case Closure Evaluation of Sites with Free Product memorandum has been achieved.

Several PFAS concentrations from samples collected in PFAS Area 9 (FFTA) during the PFAS SI and Expanded SI exceed human health screening levels and/or ESVs in soil, groundwater, surface water, and sediment samples (NASA, 2020 and 2023f). The data are tabulated in Table A-2. The sample locations and perfluorooctanesulfonic acid (PFOS) relative exceedances are shown on Figures 4-3 through 4-5, which are adapted from the Expanded SI Report.

In soil, two compounds (PFOS and perfluorohexanesulfonic acid [PFHxS]) are at concentrations above human health screening levels and/or ESVs. In groundwater, five compounds (perfluorooctanoic acid [PFOA], PFOS, PFHxS, perfluorohexanoic acid [PFHxA], and perfluorononanoic acid [PFNA]) are at concentrations above groundwater human health screening levels. These screening level exceedances surpass EPA's acceptable cumulative risk criteria for total noncancer HI not to exceed 1. In surface water samples collected from Outfall 003, the Outfall 003 Drainage Channel, and associated seeps downgradient of Area 9, four compounds (PFOA, PFOS, PFHxS, and PFNA) are at concentrations above human health screening levels and/or ESVs. PFAS concentrations detected in the sample from Little Mosquito Creek do not exceed surface water human health screening levels or ESVs. In sediment samples collected downgradient of Area 9, PFOS concentrations exceed the sediment ESV but not the human health screening level. These PFOS exceedances are present in sediment within the Outfall 003 Drainage Channel and Little Mosquito Creek.

4.4.4 Site Inspection

The FYR inspection of FFTA was conducted on May 17, 2023. The purpose of the inspection was to assess the monitoring well network and the protectiveness of the ICs portion of the remedy. Appendix C contains the photo log and Appendix D contains the completed site inspection form. No substantive issues were identified at FFTA during the FYR site inspection. The site is located within the controlled federal property of NASA WFF. Both facility and site access are restricted and controlled. Groundwater at the site is not used or accessed other than for environmental monitoring. The inspector noted the wells were in good condition, except for a few that had protective casings and covers that were rusty and deteriorated. These deficiencies were addressed in September 2023. Regular evaluation and periodic reconditioning are conducted as part of typical O&M.

4.5 TECHNICAL ASSESSMENT

4.5.1 <u>Question A: Is The Remedy Functioning As Intended By The Decision Documents?</u>

Yes, the review of historical documents, ARARs, risk assumptions, site inspection, and LTM data indicate the final remedy is functioning as intended by the ROD. No signs of intrusion, invasive development of the site, or activities that would have violated the ICs were observed. In summary, the remedy is in place and prevents exposure to the site-related contaminants defined in the ROD.

Remedial Action Performance: LTM groundwater data indicate the concentrations of most site contaminants in groundwater are decreasing over time (refer to Section 4.4.3, Appendix A, and Appendix B). However, concentrations of naphthalene (MW058S and MW107), arsenic (MW058S and MW107), and manganese (MW057S, MW058S, and MW061I) continue to exceed cleanup goals at locations where reducing conditions persist. These conditions, enhanced by the biostimulation injection, addressed the benzene, cis-1,2-DCE, and VC COCs, but a return to aerobic and oxidative aquifer conditions is still needed to address remaining naphthalene, arsenic, and manganese. Apparent oxidative conditions are present at well MW057S (ORP values range from 232 to 320 millivolts since the last FYR), but manganese consistently exceeds the cleanup level due to other dissolved manganese flowing through this location. Data quality issues associated with excessive aquifer sediments in LTM wells were identified

in the most recent September 2022 LTM Event Report. The report recommended that certain wells be rehabilitated or abandoned and reinstalled, to address this issue, which may impact arsenic and manganese concentrations in these wells.

System Operations/O&M: Site inspections and periodic sampling events indicate the LTM well network is intact. The September 2022 LTM Event Report recommended rehabilitation or replacement of certain wells to address obstructions and sedimentation. These wells were redeveloped or abandoned and reinstalled in September 2023.

Implementation of ICs and Other Measures: The LUCs are functioning as intended. The FFTA is identified on the base-wide GIS. The site inspection did not identify any exposure problems.

4.5.2 <u>Question B: Are The Exposure Assumptions, Toxicity Data, Clean-Up Levels, And RAOs</u> <u>Used At The Time Of The Remedy Selection Still Valid?</u>

Yes, they are still valid. As summarized below, no changes have occurred in exposure assumptions, land use, toxicity, contaminant characteristics, or risk assessment methodology that would require modification of the remedial action or monitoring activities at FFTA. PFAS (chemicals of emerging concern) were identified at FFTA and are being addressed in a multi-phase RI at the time of this FYR. The SI and Expanded SI were completed since the previous FYR. Since the previous FYR through May 2023 (i.e., preparation of current FYR), comparison values are available for PFAS including RSLs for six compounds and ESVs for several compounds. However, MCLs still are not available.

Changes in Standards and TBCs: ARARs and to-be-considered information (TBCs) taken into account during preparation of the ROD were reviewed to determine changes since the LTM Plan for FFTA was issued. There have been no changes to currently relevant ARARs and TBCs.

Changes in Toxicity and Other Contaminant Characteristics: There have been no changes in human health toxicity criteria that would impact the monitoring criteria, except for the criteria for 4-methylphenol and naphthalene. An oral reference dose of 0.005 milligram per kilogram (mg/kg) per day was used to derive the cleanup goal of 27 micrograms per liter (µg/L) for 4-methylphenol. The current oral reference dose of 0.02 mg/kg per day and current exposure assumptions would result in a remedial goal of 185 µg/L. The cleanup goal of 16 µg/L for naphthalene was based on noncarcinogenic effects to an adult resident. At the time the risk assessment was performed during the RI, there were no carcinogenic toxicity criteria available for naphthalene. A cancer slope factor of 0.12 (mg/kg-day)⁻¹ is available from the California EPA. Additionally, an inhalation unit risk of 3.4×10⁻⁵ (µg per cubic meter)⁻¹ is available from the California EPA. The remedial goal for naphthalene for an adult resident based on carcinogenic effects and current EPA exposure assumptions would be 0.46 µg/L for a target cancer risk of 1×10⁻⁶. The cancer risk associated with the current remedial goal of 16 µg/L would be 3×10⁻⁵ based on the adult resident remedial goal. This value is within EPA's target risk range of 1×10⁻⁴ to 1×10⁻⁶, so the current remedial goal is still protective of human health. A remedial goal for naphthalene calculated for a lifelong resident based on carcinogenic effects and current EPA exposure assumptions would be $0.33 \mu q/L$ for a target cancer risk of 1×10^{-6} . The cancer risk associated with the current remedial goal of 16 µg/L would be 5×10⁻⁵ based on the lifelong resident remedial goal, which is also within EPA's target risk range, so the current remedial goal is still protective of human health based on this evaluation.

Changes in Risk Assessment Methods: There have been several changes in EPA risk assessment methodology since the risk assessment in the Tetra Tech (2004b) Supplemental RI Report; although, none of the changes would impact the protectiveness of the remedy. Among these changes are the following:

- The implementation of EPA's Dermal Guidance (Risk Assessment Guidance for Superfund [RAGS] Part E), which was finalized in July 2004. Use of the RAGS Part E guidance would result in slight changes in some dermal exposure parameters. However, the effect of these changes on the calculated risks would be minimal and would not affect the results and conclusions of the risk assessment or the protectiveness of the selected remedy.
- Carcinogens that Act by a Mutagenic Mode of Action. In March 2005, EPA provided general direction on implementing EPA's (2005) Guidelines for Carcinogen Risk Assessment and Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens, because of special considerations for carcinogens that act via a mutagenic mode of action. This guidance does not impact the conclusions of the risk assessment or the protectiveness of the selected remedy, because VC was the only mutagenic chemical detected in groundwater at FFTA, VC was retained as a COC, and the MCL was selected as the cleanup goal.
- RAGS Part F, Supplemental Guidance for Inhalation Risk Assessment, was published in January 2009. Use of the RAGS Part F guidance would result in minor changes in the inhalation risks. However, the effect of these changes on the calculated total risks would be minimal and would not affect the results and conclusions of the risk assessment or the protectiveness of the selected remedy.
- In 2014, EPA updated standard exposure factors for human health (EPA, 2014). For most chemicals the changes in exposure assumptions result in lower risks. However, the reduction in risks would not change the conclusions of the HHRA and the remedy for FFTA would not change.

The 2007 ROD indicated that there were no unacceptable ecological risks, which was based on an evaluation of the 2004 ERA, so the remedy was based on unacceptable human health risks. There have been no changes in ecological risk assessment methodology since the last FYR. There have been no changes in exposure pathways, toxicity data, and other contaminant characteristics that would impact the ecological risk evaluation or affect the protectiveness of the remedy since the last FYR. Ecological risks from exposure to PFAS will be evaluated as part of the multi-phase PFAS RI that is ongoing at the time of this FYR.

Changes in Exposure Pathways: There have been no changes in land use at the FFTA that would have resulted in new exposure pathways to human or ecological receptors or impact the protectiveness of the remedy. Other than PFAS, no new contaminants or new contaminant sources have been identified. PFAS results from the Expanded SI are reported for the FFTA herein and a multi-phase PFAS RI is ongoing at the time of this FYR.

Potential exposures from vapor intrusion into buildings were not evaluated during the RI/FS and was not included in the ROD for FFTA. It is presumed that vapor intrusion would be a potential issue for a future structure until concentrations of the volatile COCs (naphthalene is the only remaining volatile COC above its cleanup level) meet cleanup levels. There is no RAO to minimize human health risk due to potential vapor issue; however, there are no buildings on the site, and the LUCs portion of the remedy prohibits the development of commercial or residential buildings at the site to avoid vapor intrusion issues (Tetra Tech, 2008c). The LUCs have been implemented and are enforced by NASA.

Expected Progress Towards Meeting RAOs: The LUCs prevent exposure to and use of shallow groundwater. LTM groundwater data indicate the concentrations of the majority of the COCs in

groundwater have decreased over time. Remaining wells with arsenic, manganese, and/or naphthalene concentrations above cleanup levels will continue to be monitored.

The remedy is functioning as intended. FFTA will continue to be subject to the FYR requirement until groundwater cleanup levels are achieved (or waived). PFAS are being further evaluated under a multiphase RI at the time of this FYR.

4.5.3 <u>Question C: Has Any Other Information Come To Light That Calls Into Question The</u> <u>Protectiveness Of The Remedy?</u>

No other information has been made available that calls into question the protectiveness of the remedial action.

The risks posed by climate change at WFF are not expected to alter the protectiveness of the remedy at the FFTA site because the site's elevation is above that which will be affected by sea level rise or storm surges in the coming decades. The surface elevation of the FFTA ranges from approximately 27 to 32 feet above mean sea level (msl). WFF could experience 1 to 2 feet of sea level rise in the coming decades: 1.18 feet by 2040 and 2.46 feet by 2060 (NOAA, 2023; high scenario). The in situ groundwater remedy in place at the FFTA would not be impacted by periodic flooding. It does not have any actively powered remediation systems in need of climate resilience. Vegetative cover is not a component of the groundwater remedy at the FFTA, so higher temperatures and droughts would not affect remedy protectiveness.

Ongoing O&M and LUCs/remedy inspections and the FYR process are in place to sufficiently evaluate and recommend actions that may be required to account for impacts to any remedy related to climate change.

4.5.4 Interview

During the FYR process, interviews were conducted to document any perceived problems or successes with the remedy that has been implemented to date. Interviews were conducted via questionnaire with the RPM Team (Appendix B). Other than the ongoing PFAS investigations, no issues were identified by the RPMs.

4.6 ISSUES/RECOMMENDATIONS

The September 2022 LTM Event Report (NASA, 2023c) identified the presence of petroleum free product in wells MW055S and MW101S. It recommended performing free product recovery and evaluating NSZD to determine whether the criteria provided in VDEQ (2012) has been achieved. The report also recommended rehabilitating or abandoning and reinstalling certain LTM wells to improve metals data quality due to excessive aquifer sediments in the wells. The RPM Team agreed that these recommendations should be pursued as part of LTM and O&M.

Below is the protectiveness issue related to PFAS documented in this third FYR.

Issues and Recommendations Identified in the Five-Year Review:				
OU(s): 2–FFTA	Issue Category: Changed Site Conditions			
	Issue: PFAS were detected in soil, groundwater, surface water, and sediment at concentrations exceeding the available comparison values (EPA RSLs, values derived from EPA RSL calculator, and most current and applicable ESVs).			
	Recommendation: NASA will conduct a multi-phase RI and work with EPA and VDEQ to determine the most appropriate path forward address PFAS at the FFTA.			
Affect Current Protectiveness	Affect FuturePartyOversight PartyMilestone DateProtectivenessResponsible			Milestone Date
No	Yes	NASA	EPA/State	Final Phase 1 RI Work Plan by December 2025 (before next FYR)

4.7 OTHER FINDINGS

During the FYR site inspection in May 2023, protective casings and covers for certain monitoring wells included in LTM program were noted as needing maintenance. This was also documented in the September 2022 LTM Event Report that recommended certain wells be rehabilitated or abandoned and reinstalled. These deficiencies were addressed in September 2023 and the details will be documented in the December 2023 LTM Event Report.

4.8 **PROTECTIVENESS STATEMENT**

	Protectiveness Statement(s)	
Operable Unit: 2–FFTA	<i>Protectiveness Determination:</i> Short-term Protective	Planned Addendum Completion Date: N/A

Protectiveness Statement:

The remedy at FFTA currently protects human health and the environment because there is no direct exposure, LUCs are maintained, and post-closure groundwater monitoring is performed. RIs to evaluate risks are ongoing at the time of this review. In order for the remedy to be protective in the long-term, the following actions need to be taken (complete multi-phase PFAS RI including human health and ecological risk assessments for PFAS in soil, groundwater, surface water, and sediment) to ensure protectiveness.

4.9 NEXT REVIEW

The next FYR report for FFTA is required 5 years from the completion date of this review.

This page intentionally left blank

5.0 WASTE OIL DUMP

5.1 SITE BACKGROUND

The WOD was reportedly used for disposal of waste oils and possibly solvents from the 1940s through the 1950s. At least some of the waste oils were excess and could not be used for firefighting training activities. No records are available to determine the types and quantities of materials disposed or the duration of this activity at the site. A review of aerial photographs from 1943 through 1994 indicate the presence of ground scarring and possible excavation at the WOD from 1943 to 1961.

The WOD is at the north end of the Runway 17–35 and is currently maintained as an open space (Figure 5-1). The WOD is not used for any specific purpose, and there are no plans for residential development of the site. No change in the use of the site is likely as it is adjacent to an active runway that is an important part of the future facility plan. Shallow groundwater is not used by NASA for any purpose other than environmental monitoring and there are no plans for the development of this resource for potable use in the future. Residential development of WOD and exposure to groundwater are restricted as required by the ROD (Tetra Tech, 2008b). Effective implementation of the ICs by the LUC RD prevents site development and exposure to site groundwater (Tetra Tech, 2008d).

The Town of Chincoteague shallow and deep groundwater supply wells are located more than 3,500 feet east (hydraulically side-gradient) of the WOD-impacted shallow groundwater (Tetra Tech, 2017; NASA, 2018a) (some are shown on Figure 5-3). The four active, deep production wells for WFF are located more than 4,500 feet south (hydraulically upgradient) of the WOD.

5.2 RESPONSE ACTION SUMMARY

5.2.1 Basis for Taking Action

Action was needed at WOD to mitigate human health risks from exposure to COCs in groundwater. The COCs were identified initially by the baseline HHRA in the Supplemental RI Report (Tetra Tech, 2004c). The cleanup goals were developed in the Tetra Tech (2005b) FS, and finalized in the Tetra Tech (2008b) ROD. There are no COCs associated with ecological risk at WOD. The groundwater to surface water pathway was evaluated during the RI. COCs were identified in groundwater based on future residential exposure to groundwater via ingestion, dermal contact, or inhalation. No action was required for other media. The COCs in groundwater are benzene and arsenic (Table 5-1). A chronology of events for the WOD is presented in Table 5-2.

5.2.2 <u>Response Actions</u>

Prior to the ROD (and any CERCLA response), approximately 180 cubic yards of petroleum-contaminated soils were excavated and removed from the site by NASA in 1986, because of a removal order from VDEQ under the UST Program (NASA, 2022d).

5.2.2.1 Remedial Action Objectives

Based on the evaluation of site conditions, an understanding of the contaminants, the physical properties in media of concern, the results of risk assessments, and an analysis of ARARs, the following are the RAOs finalized in the ROD for WOD (Tetra Tech, 2008b):

- Prevent exposure to and use of contaminated groundwater at WOD which presents an unacceptable risk associated with hypothetical future residential use of shallow groundwater.
- Restore impacted groundwater at WOD to drinking water standards (MCLs).

No RAO was developed specific to soil vapor or potential vapor intrusion issues at the time of the FS and ROD. See Section 5.5.2 for a discussion of potential vapor intrusion at WOD.

5.2.2.2 Remedy Components

The selected remedy for WOD consists of the following components:

- In-Situ Biological Treatment (Biostimulation)
- Institutional Controls / LUCs
- Long-term groundwater monitoring

The COCs and associated cleanup levels from the ROD are provided in Table 5-1.

5.2.3 Status of Implementation

The remedial action has been fully implemented. The Pilot Study Work Plan to support the design and implementation of the biostimulation injections was issued in November 2008 (Tetra Tech, 2008e). The pilot study injections were conducted in December 2008 followed by full-scale injection planning. The pilot study report and monitoring results were included as an appendix to the Remedial Action Work Plan (Tetra Tech, 2009d). The LTM Plan for WOD was finalized and approved in 2009 (Tetra Tech, 2009e). The full-scale biostimulation injection was conducted in December 2009 and the first round of post-injection monitoring was conducted in March 2010. Groundwater LTM has continued since the initial performance monitoring. LUCs were implemented in 2008 (see Section 5.2.3.1). The RACR documenting that all components of the remedy were implemented and functioning was finalized in 2011 (Tetra Tech, 2011a).

5.2.3.1 Institutional Controls

The LUC boundary within which ICs are enforced at WOD is shown on Figure 5-1. The ICs for WOD are linked to the restricted area and are included in the Facilities Master Plan and Tool used by the WFF FMB. The FMB reviews the Tool to issue dig permits and review/evaluate proposed land use activities. The IC objectives from the LUC RD are listed in Table 5-3 (Tetra Tech, 2008d). LUC inspections are performed annually by NASA. These restrictions will remain in place until concentrations of hazardous substances in shallow groundwater are reduced to allow for UU/UE.

5.2.3.2 Systems Operation & Maintenance (O&M)

NASA currently performs groundwater LTM sampling activities for WOD. LTM events occur twice every 5 years (intended to be once in the spring and once in the fall) since the RPM Team changed the frequency in 2017 (NASA, 2023b). Contractors evaluate the data, document LTM activities, and provide the reports to NASA, EPA, and VDEQ. The LTM Program is updated (e.g., sampling analyses, frequency, and wells) as needed by NASA with concurrence from EPA and VDEQ. See Section 5.4.3 for additional information regarding groundwater monitoring at WOD.

5.3 PROGRESS SINCE THE LAST REVIEW

This is the third FYR report for WOD. No issues were identified for WOD during the first or second FYRs. PFAS has been detected in groundwater at WOD wells since the last FYR (see Section 5.4.3). LTM and LUC inspections have continued without issue since the last FYR.

Starting with the June 2010 LTM Event, 18 groundwater LTM events have taken place since the implementation of the remedy. Two of these sampling events were completed since the previous FYR:

- July 2020 LTM Event (NASA, 2021b)
- September 2022 LTM Event (NASA, 2023b)

Groundwater samples are analyzed for the COCs identified in the ROD. The analytes and sample frequency have been reduced significantly by RPM Team decisions based on concentration trends since LTM began. LUC inspections occur annually to evaluate site conditions and the monitoring wells. Groundwater LTM results are discussed further in Section 5.4.3.

5.4 FIVE-YEAR REVIEW PROCESS

5.4.1 <u>Community Involvement</u>

As indicated in Section 2.2, a public notice was posted in the Eastern Shore Post on February 24, 2023, to notify the public that this FYR had been initiated (Figure 1-3). A notice will be posted to announce the completion of the FYR Report and that the review and report results will be available to the public. A copy of the FYR Report will be provided to the Federally Recognized Tribes in Virginia and the Catawba Indian Nation.

5.4.2 Document Review

The FYR includes a review of relevant documents. Historical documents for the WOD are referenced in Table 5-2 with full citations in Section 6.0. The LTM work plans and reports (data reports and LUC inspection reports) are available in the Administrative Record (post-ROD) file.

5.4.3 Data Review

LTM groundwater data have been collected since the implementation of the remedial action, which was a pilot test followed by a full-scale biostimulation injection. The monitoring locations and constituents were identified in the WOD ROD as part of the Performance Standards. The ROD also required the preparation of an LTM Plan. An LTM Plan was developed in 2009 to comply with the groundwater monitoring requirements of the ROD for WOD (Tetra Tech, 2009e). Revised LTM Plans were issued in 2012 (Tetra Tech, 2012f), 2014 (2014b), 2015 (2015f), and 2022 (NASA, 2022e) to optimize the LTM Program. Optimization included removing wells and monitoring parameters from the LTM Program and changing LTM event frequency considering performance monitoring results.

The current groundwater monitoring program at WOD consists of the analysis of total and dissolved arsenic in seven monitoring wells. The RPM Team removed benzene analysis in 2014. In addition, the LTM wells to be sampled have been reduced to seven, and LTM sampling frequency is now twice every 5 years with one sampling event in the spring and one in the fall. The LTM groundwater data collected since the previous FYR (i.e., July 2020 and September 2022) are provided in Table A-3. PFAS groundwater data from the PFAS SI are provided in Table A-4.

Each LTM event includes groundwater level gauging and sampling monitoring wells specific to the LTM Program at WOD. An isoconcentration contour figure showing COC exceedances of cleanup levels for the most recent LTM event in September 2022 is provided as Figure 5-2. The analytical data are compared to cleanup levels for each LTM event in Table A-3. The groundwater potentiometric contour map for September 2022 is also provided in Appendix A. Temporal analytical data trend graphs for the COCs are provided in Appendix B.

Compared to the site conditions prior to the biostimulation injection in 2009, the maximum concentrations of benzene and arsenic have decreased, and the contaminant plume(s) has(have) decreased in size. The concentrations of arsenic remain above the cleanup goals in the central portion of the site in two wells (15-MW001 and 15-MW007) where aquifer reducing conditions appear to persist based on ORP ranges (-14 to -169 millivolts since the last FYR).

Groundwater samples collected from some WOD wells during the PFAS SI detected three compounds (PFOA, PFOS, and PFNA) at concentrations exceeding current human health screening levels (NASA, 2020). At the time of SI, the concentrations did not exceed comparison criteria and therefore further investigation was not conducted. These screening level exceedances surpass EPA's acceptable cumulative risk criteria for total noncancer HI not to exceed 1. The data are tabulated in Table A-4. The sample locations and relative exceedances are shown on Figure 5-3, adapted from the SI Report. Further investigation of PFAS at the WOD will be conducted as part of the multi-phase PFAS RI ongoing at the time of this FYR.

5.4.4 Site Inspection

The FYR inspection of WOD was conducted on May 17, 2023. The purpose of the inspection was to assess the monitoring well network and the protectiveness ICs portion of the remedy. Appendix C contains the photo log and Appendix D contains the completed site inspection form. No substantive issues were identified at WOD during the FYR site inspection. The site is located within the controlled federal property of NASA WFF. Both facility and site access are restricted and controlled. Groundwater at the site is not used or accessed other than for environmental monitoring. The inspector noted the wells were in good condition, except for a few that had protective casings and covers that were rusty and deteriorated and well labels that were fading. These deficiencies were addressed in September 2023. Regular evaluation and periodic reconditioning are conducted as part of typical O&M.

5.5 TECHNICAL ASSESSMENT

5.5.1 <u>Question A: Is The Remedy Functioning As Intended By The Decision Documents?</u>

Yes, the review of historical documents, ARARs, risk assumptions, site inspection, and LTM data indicate the final remedy is functioning as intended by the ROD. No signs of intrusion, invasive development of the site, or activities that would have violated the ICs were observed. In summary, the remedy is in place and prevents exposure to the site-related contaminants defined in the ROD.

Remedial Action Performance: Benzene cleanup was demonstrated in 2014 when the analyte was removed from LTM after its concentrations were below the cleanup level during four consecutive monitoring events. LTM groundwater data indicate the concentrations of arsenic are below the cleanup level in most of the monitoring wells. Arsenic levels fluctuate closely above and below the cleanup level in two wells (15-MW001 and 15-MW007) on the western portion of the site where reducing conditions persist based on ORP measurements. These conditions, enhanced by the biostimulation injection, addressed the benzene COC, but a return to aerobic and oxidative aquifer conditions is still needed to address remaining arsenic.
System Operations/O&M: Site inspections and periodic sampling events indicate the LTM well network is intact.

Implementation of ICs and Other Measures: The LUCs are functioning as intended. The WOD is identified on the base-wide GIS. The site inspection did not identify any exposure problems.

5.5.2 <u>Question B: Are The Exposure Assumptions, Toxicity Data, Clean-Up Levels, And RAOs</u> <u>Used At The Time Of The Remedy Selection Still Valid?</u>

Yes, they are still valid. As summarized below, no changes have occurred in exposure assumptions, land use, toxicity, contaminant characteristics, or risk assessment methodology that would require modification of the remedial action or monitoring activities at WOD. PFAS (chemicals of emerging concern) were identified at WOD during the SI and are being addressed in a multi-phase RI at the time of this FYR. Since the previous FYR through May 2023 (i.e., preparation of current FYR), comparison values are available for PFAS including RSLs for six compounds and ESVs for several compounds. However, MCLs still are not available.

Changes in Standards and TBCs: ARARs and TBCs taken into account during preparation of the ROD were reviewed to determine changes since the LTM Plan for WOD was issued. There have been no changes to currently relevant ARARs and TBCs.

Changes in Toxicity and Other Contaminant Characteristics: There have been no changes in human health toxicity criteria that would impact the monitoring criteria or effect the protectiveness of the remedy at WOD.

Changes in Risk Assessment Methods: There have been several changes in EPA risk assessment methodology since the risk assessment in the Tetra Tech (2004c) Supplemental RI Report; although, none of the changes would impact the protectiveness of the remedy. Among these changes are the following:

- The implementation of the EPA's Dermal Guidance (RAGS Part E), which was finalized in July 2004. Use of the RAGS Part E guidance would result in slight changes in some dermal exposure parameters. However, the effect of these changes on the calculated risks would be minimal and would not affect the results and conclusions of the risk assessment or the protectiveness of the selected remedy.
- Carcinogens that Act by a Mutagenic Mode of Action. In March 2005, the EPA provided general direction on implementing the EPA's 2005 Guidelines for Carcinogen Risk Assessment and Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens because of special considerations for carcinogens that act via a mutagenic mode of action. This guidance affects risks calculated for children and adolescents. However, there were no chemicals considered to act via a mutagenic mode of action detected in groundwater at WOD. Therefore, using the new guidance would not affect the results of the risk assessment for groundwater or the remedy for the site.
- RAGS Part F, Supplemental Guidance for Inhalation Risk Assessment was published in January 2009. Use of the RAGS Part F guidance would result in minor changes in the inhalation risks. However, the effect of these changes on the calculated total risks would be minimal and would not affect the results and conclusions of the risk assessment or the protectiveness of the remedy for the site.

• In 2014, EPA updated standard exposure factors for human health (EPA, 2014). For most chemicals the changes in exposure assumptions result in lower risks. However, the reduction in risks would not change the conclusions of the HHRA and the remedy for WOD would not change.

The 2008 ROD indicated that there were no unacceptable ecological risks, which was based on an evaluation of the 2004 ERA, so the remedy was based on unacceptable human health risks. There have been no changes in ecological risk assessment methodology since the last FYR. There have been no changes in exposure pathways, toxicity data, and other contaminant characteristics that would impact the ecological risk evaluation or affect the protectiveness of the remedy since the last FYR.

Changes in Exposure Pathways: There have been no changes in land use at the WOD that would have resulted in new exposure pathways to human or ecological receptors or impact the protectiveness of the remedy. Other than PFAS, no new contaminants or new contaminant sources have been identified. PFAS results are reported for the WOD herein and a multi-phase PFAS RI is ongoing at the time of this FYR.

Vapor intrusion was evaluated in the uncertainty section of the HHRA for the WOD and it was concluded there were no vapor intrusion issues. The LUC RD for WOD prohibits the development of commercial or residential buildings at the site to avoid vapor intrusion issues (Tetra Tech, 2008c). There have been no changes in land use at the WOD that would have resulted in new exposure pathways to human or ecological receptors or impact the protectiveness of the remedy. Further, the volatile COC, benzene, has reached its cleanup goal in groundwater.

Expected Progress Towards Meeting RAOs: The LUCs prevent exposure to and use of shallow groundwater. LTM groundwater data indicate the concentrations of the majority of the COCs in groundwater have decreased over time. Remaining wells with arsenic concentrations above cleanup levels will continue to be monitored.

The remedy is functioning as intended. WOD will continue to be subject to the FYR requirement until groundwater cleanup levels are achieved (or waived).

5.5.3 <u>Question C: Has Any Other Information Come To Light That Calls Into Question The</u> <u>Protectiveness Of The Remedy?</u>

No other information has been made available that calls into question the protectiveness of the remedial action. The risks posed by climate change at WFF are not expected to alter the protectiveness of the remedy at the WOD site because the site's elevation is above that which will be affected by sea level rise or storm surges in the coming decades. The surface elevation of the WOD ranges from approximately 12 to 28 feet msl. WFF could experience 1 to 2 feet of sea level rise in the coming decades: 1.18 feet by 2040 and 2.46 feet by 2060 (NOAA, 2023; high scenario). The in situ groundwater remedy in place at the WOD would not be impacted by periodic flooding. It does not have any actively powered remediation systems in need of climate resilience. Vegetative cover is not a component of the groundwater remedy at the WOD, so higher temperatures and droughts would not affect remedy protectiveness.

Ongoing O&M and LUCs/remedy inspections and the FYR process are in place to sufficiently evaluate and recommend actions that may be required to account for impacts to any remedy related to climate change.

5.6 ISSUES AND RECOMMENDATIONS

Issues and Recommendations Identified in the Five-Year Review:						
OU(s): 3–WOD	Issue Category: Cl	nanged Site Condition	ons			
	Issue: PFAS were detected in groundwater at the WOD at concentrations exceeding the available comparison values (EPA RSLs).					
	Recommendation: NASA will conduct a multi-phase RI and work with EPA and VDEQ to determine the most appropriate path forward address PFAS at the WOD.					
Affect CurrentAffect FuturePartyOversight PartyMileProtectivenessProtectivenessResponsible						
No	Yes	NASA	EPA/State	Final Phase 1 RI Work Plan by December 2025 (before next FYR)		

5.7 OTHER FINDINGS

During the FYR site inspection in May 2023, protective casings and covers for certain monitoring wells included in the LTM program were noted as needing maintenance (e.g., redevelopment or abandonment and reinstallation). These deficiencies were addressed in September 2023 and the details will be documented in the report for the next monitoring event.

5.8 PROTECTIVENESS STATEMENT

Protectiveness Statement(s)						
<i>Operable Unit:</i>	Protectiveness Determination:	Planned Addendum				
3–WOD	Short-term Protective	Completion Date: N/A				

Protectiveness Statement:

The remedy at WOD currently protects human health and the environment because there is no direct exposure, LUCs are maintained, and post-closure groundwater monitoring is performed. RIs to evaluate risks are ongoing at the time of this review. In order for the remedy to be protective in the long-term, the following actions need to be taken (complete multi-phase PFAS RI including a human health risk assessment and potentially ecological risk assessment for PFAS in groundwater and potentially other media) to ensure protectiveness.

5.9 NEXT REVIEW

The next FYR report for the WFF is required 5 years from the completion date of this review.

This page intentionally left blank

6.0 REFERENCES

Conder, J., Arblaster, J., Larson, E., Brown, J., and Higgins, C., 2020. Technical Report: Guidance for Assessing the Ecological Risks of PFAS to Threatened and Endangered Species at Aqueous Film Forming Foam Impacted Sites. Revision 2. Geosyntec Consultants and Colorado School of Mines. SERDP Project: ER18-1614. September.

Divine, C., Zodrow, J., Frenchmeyer, M., Dally, K., Osborn, E., Anderson, P. 2020. Approach for Assessing PFAS Risk to Threatened and Endangered Species. Arcadis US Inc. SERDP Project ER18-1653. March.

Ebasco (Ebasco Services, Inc.), 1990. Final Report of Site Investigation, Wallops Flight Facility, Wallops Island, Virginia. January.

EPA (United States Environmental Protection Agency), 1988. Guidance on Remedial Actions for Contaminated Groundwater at Superfund Sites. EPA/540/G-88-003, OSWER Directive 9283.1-2, Office of Emergency and Remedial Response, Washington, D.C. December.

EPA, 1991a. OSWER (Office of Solid Waste and Emergency Response) Directive 9355.0-30: Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. April 22.

EPA, 1991b. Risk Assessment Guidance for Superfund: Volume I (Human Health Evaluation Manual) Part B (Development of Risk-Based Preliminary Remediation Goals). EPA/540/R-92/003. December.

EPA, 1995a. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001F. March.

EPA, 1995b. Land Use in the CERCLA Remedy Selection Process. OSWER Directive No. 9355.7-04. May.

EPA, 2001a. Comprehensive Five-Year Review Guidance. EPA 540-R-01-007, OSWER No. 9355.7-03B-P, Office of Emergency and Remedial Response. June.

EPA, 2001b. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment. EPA/540/R/99/005. OSWER 9285.7-02EP. September.

EPA, 2004. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, (Part E, Supplemental Guidance for Dermal Risk Assessment), Final. EPA/540/R/99/005, Office of Emergency and Remedial Response, Washington, D.C. July.

EPA, 2005. Guidelines for Carcinogen Risk Assessment and Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens. EPA/630/R-03/003F. March.

EPA, 2009a. Risk Assessment Guidance for Superfund: Volume 1, Human Health Evaluation Manual (Part F). OSWER 9285.7-82. January.

EPA, 2009b. Five-Year Reviews, Frequently Asked Questions (FAQs) and Answers. September.

EPA, 2011. Recommended Evaluation of Institutional Controls: Supplement to "Comprehensive Five-Year Review Guidance". OSWER 9355.7-18. September.

EPA, 2012a. Clarifying the Use of Protectiveness Determinations for CERCLA Five-Year Reviews. OSWER 9200.2-111. September.

EPA, 2012b. Assessing Protectiveness at Sites for Vapor Intrusion. Supplement to the "Comprehensive Five-Year Review Guidance". OSWER 9200.2-84. November.

EPA, 2012. Compilation and Review of Data on Relative Bioavailability of Arsenic in Soil and Recommendations for Default Value for Relative Bioavailability of Arsenic in Soil. OSWER Directive 9200.1-113. December.

EPA, 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER 9200.1-120. February 6.

EPA, 2016. Five-Year Review Recommended Template. OLEM 9200.0-89. Amends Appendix E of EPA (2001a) <u>Comprehensive Five-Year Review Guidance</u>. Transmitted via memorandum from Office of Superfund Remediation and Technology Innovation. January 20.

EPA, 2018. Cleanups at Federal Facilities: Emerging Contaminants and Federal Facility Contaminants of Concern. https://www.epa.gov/fedfac/emerging-contaminants-and-federal-facility-contaminants-concern. Accessed on July 3, 2018.

EPA, 2023a. Regional Screening Levels for Chemical Contaminants at Superfund Sites. https://www.epa.gov/risk/regional-screening-levels-rsls. May.

EPA, 2023b. Regional Screening Levels for Chemical Contaminants at Superfund Sites, Regional Screening Levels (RSLs)–User's Guide, https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search, Washington, DC.

EPA and NASA (National Aeronautics and Space Administration), 2004. Administrative Agreement on Consent, United States Environmental Protection Agency Region 3 in the Matter of National Aeronautics and Space Administration Wallops Island, Virginia. Docket Number: RCRA-03-2004-0201TH. September.

EPA and NASA, 2021. Administrative Agreement on Consent, United States Environmental Protection Agency Region 3 in the Matter of National Aeronautics and Space Administration, Wallops FUDS Program, NASA Wallops Flight Facility, Wallops Island, Virginia 23337. Docket Number: RCRA-03-2021-0022TH. January.

Grippo, M., Hayse, J., Hlohowskyj, I., and Picel, K., 2021. Derivation of PFAS Ecological Screening Values. Argonne National Laboratory. September.

Metcalf & Eddy, 1992. Site Investigation at Wallops Flight Facility, Wallops Island, Virginia. Final Report Revision. August.

Metcalf & Eddy, 1993. Fire Training Area Remedial Investigation/Feasibility Study Final Work Plan, Wallops Flight Facility Wallops Island, Virginia. March.

Metcalf & Eddy, 1996. Remedial Investigation for Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. February.

NASA (National Aeronautics and Space Administration), 1988. Preliminary Assessment Report for Wallops Flight Facility, Wallops Island, Virginia. April.

NASA, 2004. Letter Report–Waste Oil Dump (WOD) Groundwater Sampling Results. From Sue Fields to Michelle Price-Fay and Paul Herman. November.

NASA, 2014. First Five-Year Review, NASA Wallops Flight Facility, Wallops Island, Virginia. Finalized December 2013. Signed January 30.

NASA, 2016. Work Plan Groundwater Investigation for Perfluorinated Compounds at Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. October.

NASA, 2017a. Letter Work Plan, 2017 PFAS Sampling, NASA Wallops Flight Facility, Wallops Island, Virginia. April.

NASA, 2017b. Letter Work Plan Addendum, 2017 PFAS Sampling, Groundwater in Areas West of WFF Runway 10-28, NASA Wallops Flight Facility, Wallops Island, Virginia. April.

NASA, 2017c. Data Summary Report, Groundwater Investigation for Per- and Polyfluoroalkyl Substances at Former Fire Training Area, Goddard Space Flight Facility, Wallops Flight Center, Wallops Island, Virginia. May.

NASA, 2017d. Letter Work Plan, Perimeter Monitoring Well Installation and PFAS Sampling, NASA Wallops Flight Facility, Wallops Island, Virginia. August.

NASA, 2017e. Letter Report, April 2017 PFAS Sampling, NASA Wallops Flight Facility, Wallops Island, Virginia. October.

NASA, 2017f. Letter Work Plan, Production Well Aquifer Testing, NASA Wallops Flight Facility, Wallops Island, Virginia. October.

NASA, 2017g. Data Summary Report, June 2017 Groundwater Monitoring, Former Fire Training Area, Wallops Flight Facility, Wallops Island, Virginia. November.

NASA, 2018a. Data Summary Report for October 2017 Groundwater Monitoring Activities at Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. March.

NASA, 2018b. Data Summary Report, March 2018 Groundwater Monitoring, Former Fire Training Area, Wallops Flight Facility, Wallops Island, Virginia. September.

NASA, 2019a. Data Summary Report, PFAS Perimeter Monitoring Well and Observation Well Installation and Sampling, NASA Wallops Flight Facility, Wallops Island, Virginia. February.

NASA, 2019b. Second Five-Year Review, NASA Wallops Flight Facility, Wallops Island, Virginia. Finalized December 2018. Signed 19 February 2019.

NASA, 2019c. Preliminary Assessment and Site Investigation Work Plan for Per- and Polyfluoroalkyl Substances, NASA Wallops Flight Facility, Wallops Island, Virginia. March.

NASA, 2019d. Data Summary Report for December 2018 Groundwater Monitoring, Operable Unit 2– Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. September.

NASA, 2019e. Final 2018 PFAS Sampling Annual Summary Report, Goddard Space Flight Facility, Wallops Flight Center, Wallops Island, Virginia. October.

NASA, 2020. Site Investigation Report for Per- and Polyfluoroalkyl Substances, Goddard Space Flight Center, NASA Wallops Flight Facility, Wallops Island, Virginia. November.

NASA, 2021a. Final 2019 PFAS Sampling Annual Summary Report, Goddard Space Flight Facility, Wallops Flight Center, Wallops Island, Virginia. January.

NASA, 2021b. Data Summary Report for July 2020 Groundwater Monitoring, Operable Unit 3–Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. February.

NASA, 2021c. Final Site Investigation Report Addendum for Per- and Polyfluoroalkyl Substances, Goddard Space Flight Facility, Wallops Flight Center, Wallops Island, Virginia. June.

NASA, 2021d. Expanded Site Investigation Work Plan for Per- and Polyfluoroalkyl Substances at Main Base, Goddard Space Flight Facility, Wallops Flight Center, Wallops Island, Virginia. August.

NASA, 2021e. Uniform Federal Policy for Quality Assurance Project Plan, Per- and Polyfluoroalkyl Substances for Wallops Flight Facility. August.

NASA, 2021f. Preliminary Assessment and Site Investigation Work Plan for Per- and Polyfluoroalkyl Substances at Wallops Island, Goddard Space Flight Facility, Wallops Flight Center, Wallops Island, Virginia. September.

NASA, 2022a. Routine Sampling Work Plan for Per- and Polyfluoroalkyl Substances, Goddard Space Flight Facility, Wallops Flight Center, Wallops Island, Virginia. January.

NASA, 2022b. 2020 PFAS Sampling Annual Summary Report, Goddard Space Flight Facility, Wallops Flight Center, Wallops Island, Virginia. April.

NASA, 2022c. Data Summary Report for June 2021 Groundwater Monitoring, Operable Unit 2–Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. May.

NASA, 2022d. Uniform Federal Policy for Sampling and Analysis Plan, Operable Unit 2–Former Fire Training Area, Long-Term Monitoring Plan, Revision 4, Goddard Space Flight Facility, Wallops Flight Center, Wallops Island, Virginia. September.

NASA, 2022e. Long Term Monitoring Plan–Rev 4, Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. September.

NASA, 2023a. Final Letter Work Plan Runway 4-22 AFFF Response Area, Wallops Flight Center, Wallops Island, Virginia. January.

NASA, 2023b. Data Summary Report for September 2022 Groundwater Monitoring, Operable Unit 3– Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. March.

NASA, 2023c. Data Summary Report for September 2022 Groundwater Monitoring, Operable Unit 2– Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. August.

NASA, 2023d. 2021 PFAS Sampling Annual Summary Report, Goddard Space Flight Facility, Wallops Flight Center, Wallops Island, Virginia. June.

NASA, 2023e. Launch Pad 0-B Expansion PFAS Investigation Data Summary Report, Wallops Flight Center, Wallops Island, Virginia. June.

NASA, 2023f. Expanded Site Investigation Report for PFAS at Main Base, Goddard Space Flight Facility, Wallops Flight Center, Wallops Island, Virginia. September.

NASA, 2023g. Site Investigation Report for Per- and Polyfluoroalkyl Substances at Wallops Island, Goddard Space Flight Facility, Wallops Flight Center, Wallops Island, Virginia. September.

NASA, 2023h. Uniform Federal Policy for Quality Assurance Project Plan, Per- and Polyfluoroalkyl Substances Investigations–Revision 1, Goddard Space Flight Facility, Wallops Flight Center, Wallops Island, Virginia. September.

NASA, 2023i. Site Management Plan for Fiscal Years 2023 and 2024, NASA Wallops Flight Facility, Wallops Island, Virginia. September.

NOAA (National Oceanic and Atmospheric Administration), 2023. Sea Level Rise Viewer. https://coast.noaa.gov/digitalcoast/tools/slr.html. Access September 4.

Occu-Health, 1999. Environmental Resources Document, NASA Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, Virginia. October.

Tetra Tech, 2003a. Work Plan for Supplemental Remedial Investigation Activities at the Former Fire Training Area and Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. January.

Tetra Tech, 2003b. Community Involvement Plan for NASA Wallops Flight Facility, Wallops Island, Virginia. March.

Tetra Tech, 2004a. Background Soil and Groundwater Investigation Report for the Main Base, NASA Wallops Flight Facility, Wallops Island, Virginia. Revised Final. July.

Tetra Tech, 2004b. Supplemental Remedial Investigation for Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. Revised Final. May.

Tetra Tech, 2004c. Supplemental Remedial Investigation for Waste Oil Dump Site, NASA Wallops Flight Facility, Wallops Island, Virginia. Revised Final. December.

Tetra Tech, 2005a. Feasibility Study for Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. September.

Tetra Tech, 2005b. Feasibility Study for Waste Oil Dump Site, NASA Wallops Flight Facility, Wallops Island, Virginia. October.

Tetra Tech, 2007a. Proposed Remedial Action Plan, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. January.

Tetra Tech, 2007b. Proposed Remedial Action Plan, Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. January.

Tetra Tech, 2007c. Record of Decision, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. December.

Tetra Tech, 2008a. Pilot Study Work Plan, Former Fire Training Area, NASA Wallops Flight Facility, Virginia. February.

Tetra Tech, 2008b. Record of Decision, Waste Oil Dump Site, NASA Wallops Flight Facility, Wallops Island, Virginia. March.

Tetra Tech, 2008c. Remedial Design for Land Use Controls, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. October.

Tetra Tech, 2008d. Remedial Design for Land Use Controls, Waste Oil Dump Site, NASA Wallops Flight Facility, Wallops Island, Virginia. October.

Tetra Tech, 2008e. Pilot Study Work Plan, Waste Oil Dump, NASA Wallops Flight Facility, Virginia. November.

Tetra Tech, 2009a. Free Product Monitoring Plan, Former Fire Training Area Site, NASA Wallops Flight Facility, Wallops Island, Virginia. April.

Tetra Tech, 2009b. Pilot Study Report, Former Fire Training Area. NASA Wallops Flight Facility, Virginia. July.

Tetra Tech, 2009c. Supplemental Groundwater Sampling Letter Work Plan, Former Fire Training Area Site, NASA Wallops Flight Facility, Wallops Island, Virginia. July

Tetra Tech, 2009d. Remedial Action Work Plan, Waste Oil Dump Site, NASA Wallops Flight Facility, Virginia. (Includes Pilot Study Report for Waste Oil Dump). September.

Tetra Tech, 2009e. Long-Term Monitoring Plan, Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. October.

Tetra Tech, 2010a. March 2010 Groundwater Investigation Activities, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. March.

Tetra Tech, 2010b. Data Summary Report for Additional Groundwater Investigation at Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. June.

Tetra Tech, 2010c. Long-Term Monitoring Plan, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. July.

Tetra Tech, 2010d. Data Summary Report for June 2010 Groundwater Investigation at Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. August.

Tetra Tech, 2010e. Data Summary Report for 6-Month Post-Injection Sampling at Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. August.

Tetra Tech, 2010f. Data Summary Report for September 2010 Groundwater Investigations at Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. December.

Tetra Tech, 2011a. Remedial Action Completion Report, Waste Oil Dump Site, NASA Wallops Flight Facility, Virginia. April.

Tetra Tech, 2011b. Annual Groundwater Monitoring Report for Year 2010, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. November.

Tetra Tech, 2011c. Annual Groundwater Monitoring Report for Year 2010, Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. November.

Tetra Tech. 2011d, Remedial Action Completion Report, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. December.

Tetra Tech, 2012a. Annual Groundwater Monitoring Report for Year 2011, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. May.

Tetra Tech, 2012b. Annual Groundwater Monitoring Report for Year 2011, Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. July.

Tetra Tech, 2012c. Data Summary Report for March 2012 Groundwater Monitoring at Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. May.

Tetra Tech, 2012d. Data Summary Report for March 2012 Groundwater Monitoring at Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. May.

Tetra Tech, 2012e. Long-Term Monitoring Plan–Rev 1, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. July

Tetra Tech, 2012f. Long-Term Monitoring Plan–Rev 1, Waste Oil Dump Site, NASA Wallops Flight Facility, Virginia. July.

Tetra Tech, 2013a. Annual Groundwater Monitoring Report for Year 2012 for Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. May.

Tetra Tech, 2013b. Annual Groundwater Monitoring Report for Year 2012 for Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. May.

Tetra Tech, 2013c. Data Summary Report for March 2013 Groundwater Monitoring at Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. June.

Tetra Tech, 2014a. Long-Term Monitoring Plan–Rev 2, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. February.

Tetra Tech, 2014b. Long-Term Monitoring Plan–Rev 2, Waste Oil Dump Site, NASA Wallops Flight Facility, Virginia. February.

Tetra Tech, 2014c. Annual Groundwater Monitoring Report for Year 2013, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. February.

Tetra Tech, 2014d. Annual Groundwater Monitoring Report for Year 2013, Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. February.

Tetra Tech, 2014e. Data Summary Report for March 2014 Groundwater Monitoring for Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. June.

Tetra Tech, 2014f. Data Summary Report for March 2014 Groundwater Monitoring for Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. June.

Tetra Tech, 2015a. Annual Groundwater Monitoring Report for Year 2014, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. April.

Tetra Tech, 2015b. Annual Groundwater Monitoring Report for Year 2014, Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. April.

Tetra Tech, 2015c. Data Summary Report for March 2015 Groundwater Monitoring at Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. May.

Tetra Tech, 2015d. Data Summary Report for March 2015 Groundwater Monitoring for Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. May.

Tetra Tech, 2015e. Long-Term Monitoring Plan–Rev 3, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. September

Tetra Tech, 2015f. Long-Term Monitoring Plan–Rev 3, Waste Oil Dump Site, NASA Wallops Flight Facility, Virginia. September.

Tetra Tech, 2016a. Data Summary Report December 2015 Groundwater Monitoring Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. February.

Tetra Tech, 2016b. Annual Groundwater Monitoring Report for Year 2015 for Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. April.

Tetra Tech, 2016c. Data Summary Report for April 2016 Groundwater Monitoring Activities at Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. June.

Tetra Tech, 2016d. Letter Work Plan–Monitoring Well Installation, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. August 17.

Tetra Tech, 2016e. Data Summary Report for September 2016 Groundwater Monitoring, Former Fire Training Area, NASA Wallops Flight Facility, Wallops Island, Virginia. December.

Tetra Tech, 2017. Annual Groundwater Monitoring Report for the Year 2016 for Waste Oil Dump, NASA Wallops Flight Facility, Wallops Island, Virginia. February.

USACE (United States Army Corps of Engineers), 2000. Wallops Flight Facility – Main Base – GIS-Based Historical Photographic Analysis. 1938–1940. November.

Versar, 2000. Risk Assessment Update Former Fire Training Area. Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, Virginia. March.

Versar, 2001. Remedial Investigation/Feasibility Study Site 16 Waste Oil Dump Goddard Space Flight Center Wallops Flight Facility Wallops Island, Virginia. March.

VDEQ (Virginia Department of Environmental Quality), 2012. Memorandum: Case Closure Evaluation of Sites with Free Product. Document Number LPR-SRR-03-2012. December 2018.

This page intentionally left blank

This page intentionally left blank

TABLE 1-1 AAOC AREAS OF CONCERN FIVE-YEAR REVIEW NASA WALLOPS FLIGHT FACILITY, WALLOPS ISLAND, VIRGINIA PAGE 1 OF 3

AOC	OU		Lesstion	Status / Alias
No.	No.	AOC Name	Location	Status / Alias
1	6	Old Wastewater Treatment Plant	MB	Deferred to FUDS Program / Site 1 (FUDS Project 13).
2		Maintenance Facility	MB	Closed Out under AAOC RCRA-03-2004- 0201TH / Building E-52, Site 2.
3		Two 600,000-Gallon Fuel Tanks	MB	Deferred to FUDS Program / Buildings A46-A and A46-B.
4		Debris Pile	WI	Closed Out under AAOC RCRA-03-2004- 0201TH / Island Debris Pile - North End, Site 4.
5		Paint Stain	WI	Closed Out under AAOC RCRA-03-2004- 0201TH / Paint Spray Booth, Site 5.
6		Former Island Fueling System	WI	Deferred to UST Programs / Site 6.
7		Transformer Pads	MB, ML, WI	Closed Out under AAOC RCRA-03-2004- 0201TH / Site 7.
8		Former Main Base Fueling System	MB	Deferred to UST Program / Site 8.
9	4	Abandoned Drum Dump	MB	Deferred to FUDS Program / Site 9 (FUDS Project 15).
10		Advanced Data Acquisition Support Facility	MB	Closed Out under CERCLA / Site 10, ADAS.
11		Transformer Storage Areas	MB, WI	Closed Out under AAOC RCRA-03-2004- 0201TH / Site 11.
12		Former Wind Tunnel	WI	Closed Out under AAOC RCRA-03-2004- 0201TH / Site 12.
13	9	Ordnance Disposal Area	MB	Deferred to FUDS Program / Boat Basin and Visitor's Center, Site 13 (FUDS MMRP Project 07).
14	5	Debris Pile	MB	Deferred to FUDS Program / Site 14 (FUDS Project 15).

TABLE 1-1 AAOC AREAS OF CONCERN FIVE-YEAR REVIEW NASA WALLOPS FLIGHT FACILITY, WALLOPS ISLAND, VIRGINIA PAGE 2 OF 3

AOC No.	OU No.	AOC Name	Location	Status / Alias
15	5	Debris Pile	MB	Deferred to FUDS Program / Site 15 (FUDS Project 15).
(none)	3	Waste Oil Dump (WOD)	MB	Remedial Action Complete; Long-Term Monitoring / Site 16, Pits at end of Runway 17- 35.
(none)		Old Aviation Fuel Tank Farm	MB	Deferred to UST Program.
(none)	1	Scrapyard	MB	Closed Out under AAOC RCRA-03-2004- 0201TH / Building N-222.
(none)		PCB Transformer Pad	MB	Closed Out under TSCA and CERCLA / N-161C.
(none)		Photographic Tank	MB	Closed Out under AAOC RCRA-03-2004- 0201TH / M-15 Photo Tank, Building M-15.
(none)	2	Former Fire Training Area (FFTA)	MB	Remedial Action Complete; Long-Term Monitoring.
(none)		Industrial/Sanitary Landfill	MB	Closed under FUDS Program, 2006
(none)	7	Construction Debris Landfill	MB	Deferred to FUDS Program (FUDS Project 15).
(none)		Pistol/Rifle Range	MB	Closed out under AAOC RCRA-03-2004- 0201TH.
(none)		South End Disposal Area (SEDA)	WI	Closed Out under AAOC RCRA-03-2004- 0201TH.
(none)		Area of Interest – 20 Transformer (AI-20)	WI	Closed Out under AAOC RCRA-03-2004- 0201TH.
(none)		North Island Transformer	WI	Closed Out under AAOC RCRA-03-2004- 0201TH.
(none)		F-10A/F-10B – Paint Locker and Battery Shop	MB	Under investigation.
(none)		N-166 – Alcohol Storage Building	MB	Under investigation.
(none)		Former Circular Area	MB	Under investigation.

TABLE 1-1 AAOC AREAS OF CONCERN FIVE-YEAR REVIEW NASA WALLOPS FLIGHT FACILITY, WALLOPS ISLAND, VIRGINIA PAGE 3 OF 3

AOC No.	OU No.	AOC Name	Location	Status / Alias
(none)		PFAS Sampling	MB	Under investigation.
(none)		Open Burn Area	WI	Under investigation.

Notes:

This table was adapted from Table 4-1 in the *Site Management Plan for Fiscal Years 2023 and 2024* (NASA, 2023h). Location: Land parcel where the AOC is located—Main Base (MB), Mainland (ML), or Wallops Island (WI).

AAOC – Administrative Agreement On Consent

AAOC – Administrative Agreement On Co

AOC – Area of Concern

CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act

FUDS – Formerly Utilized Defense Sites

OU – Operable Unit

USACE – U.S. Army Corps of Engineers

UST – Underground Storage Tank

TSCA – Toxic Substance Control Act

Bold, shaded entry indicates the AOC is considered a NASA Site with response actions under the AAOC RCRA-03-2004-0201TH (versus a FUDS lead by the USACE). Bold, Italicized, shaded entry indicates the AOC has been closed under the AAOC.

No shading and an OU Number indicates that the AOC is being pursued for further response actions under FUDS AAOC RCRA-03-2021-0022TH.

TABLE 4-1 CHEMICALS OF CONCERN-FORMER FIRE TRAINING AREA FIVE-YEAR REVIEW NASA WALLOPS FLIGHT FACILITY, WALLOPS ISLAND, VIRGINIA

Exposure Scenario	Chemical of Concern (COC)	Range of Detected Concentrations During Remedial Investigation (µg/L)	Cleanup Level (µg/L)	Basis of Cleanup Level
	Benzene	0.26 – 7.49	5	MCL
	cis-1,2-DCE	0.3 – 16	70	MCL
Future Resident exposed to groundwater via	Vinyl Chloride	0.3 – 2	2	MCL
ingestion, dermal contact, inhalation	4-Methylphenol	0.37 – 140	27	HI = 0.5
	Naphthalene	0.04 – 89	16	HI = 0.5
	Arsenic	0.36 – 51.2	10	MCL
	Manganese	0.812 – 4,100	124	HI = 0.5

Notes

Table/information adapted from Record of Decision (ROD) for FFTA (Tetra Tech, 2007c).

µg/L - microgram(s) per liter

DCE - dichloroethene

MCL - Maximum Contaminant Level

HI = [non-cancer] Hazard Index

TABLE 4-2 CHRONOLOGY OF EVENTS-FORMER FIRE TRAINING AREA FIVE-YEAR REVIEW NASA WALLOPS FLIGHT FACILITY, WALLOPS ISLAND, VIRGINIA

Event/Document	Date
FFTA Site Operations	circa 1965-1987
Excavation of petroleum impacted soils (subsequent to 1986 VDEQ inspection findings)	1986
Preliminary Assessment (PA) (NASA, 1988)	1988
Site Inspection (SI) (Ebasco, 1990)	1989-1990
Supplemental SI (Metcalf & Eddy, 1992)	1991-1992
Remedial Investigation (RI) / Feasibility Study (FS) Work Plan (Metcalf & Eddy, 1993)	March 1993
Remedial Investigation (RI) (Metcalf & Eddy, 1996)	1993-1994; 1996
Risk Assessment Update (Versar, 2000)	March 2000
Supplemental RI Work Plan (Tetra Tech, 2003a)	January 2003
Supplemental RI (Revised Final Supplemental RI Report dated 2004) (Tetra Tech, 2004b)	2000-2003; 2004
Feasibility Study (FS) (Tetra Tech, 2005a)	September 2005
Proposed Remedial Action Plan (PRAP) (Tetra Tech, 2007a)	January 2007
Record of Decision (ROD) (Tetra Tech, 2007c)	December 2007
Pilot Study Work Plan (Tetra Tech, 2008a)	November 2008
Land Use Control (LUC) Remedial Design (RD) (Tetra Tech, 2008c)	October 2008
Free Product Monitoring Plan (Tetra Tech, 2009a)	April 2009
Remedial Action Implementation (including Pilot Test)	2008-2010
Pilot Study Report (Tetra Tech, 2009b)	July 2009
Supplemental Sampling Report (Tetra Tech, 2010a and 2010b)	April-June 2010
Long-Term Monitoring (LTM) Plan (Tetra Tech, 2010c)	July 2010
Data Summary Report - June 2010 Groundwater Investigation (Tetra Tech, 2010d)	August 2010
Data Summary Report - September 2010 Groundwater Investigation (Tetra Tech, 2010f)	December 2010
2010 Annual LTM Report (Tetra Tech, 2011b)	November 2011
Remedial Action Completion Report (RACR) (Tetra Tech, 2011d)	December 2011
2011 Annual Groundwater Summary Report (Tetra Tech, 2012a)	May 2012
Data Summary Report - March 2012 Groundwater Monitoring (Tetra Tech, 2012c)	May 2012
LTM Plan – Revision 1 (Tetra Tech, 2012e)	July 2012
2012 Annual LTM Report (Tetra Tech, 2013a)	May 2013
First Five-Year Review (NASA, 2014)	January 2014
LTM Plan – Revision 2 (Tetra Tech, 2014a)	February 2014
2013 Annual LTM Report (Tetra Tech, 2014c)	February 2014
Data Summary Report - March 2014 Groundwater Monitoring (Tetra Tech, 2014e)	June 2014
2014 Annual LTM Report (Tetra Tech, 2015a)	April 2015
Data Summary Report - March 2015 Groundwater Monitoring (Tetra Tech, 2015c)	May 2015
LTM Plan – Revision 3 (Tetra Tech, 2015e)	September 2015
Data Summary Report - December 2015 Groundwater Monitoring (Tetra Tech, 2016a)	February 2016
Work Plan – Groundwater Investigation for PFCs at FFTA (NASA, 2016)	October 2016
Letter Work Plan for Monitoring Well Installation at FFTA (Tetra Tech, 2016d)	August 2016
Data Summary Report - September 2016 Groundwater Monitoring (Tetra Tech, 2016e)	December 2016
Data Summary Report – Groundwater Investigation for PFAS at FFTA (NASA, 2017c)	May 2017
Data Summary Report – June 2017 Groundwater Sampling Event (NASA, 2017g)	November 2017
Data Summary Report – March 2018 Groundwater Sampling Event (NASA, 2018b)	September 2018
Second Five-Year Review (NASA, 2019b)	February 2019
Data Summary Report – December 2018 Groundwater Monitoring (NASA, 2019d)	September 2019
Data Summary Report – July 2020 Groundwater Monitoring (NASA, 2021b)	February 2021
Data Summary Report – June 2021 Groundwater Monitoring (NASA, 2022c)	May 2022
LTM Plan – Revision 4 (NASA, 2022d)	September 2022
Data Summary Report – September 2022 Groundwater Monitoring (NASA, 2023c)	August 2023

TABLE 4-3 SUMMARY OF IMPLEMENTED INSTITUTIONAL CONTROLS-FORMER FIRE TRAINING AREA FIVE-YEAR REVIEW NASA WALLOPS FLIGHT FACILITY, WALLOPS ISLAND, VIRGINIA

Media, engineered controls, and areas that do not support UU/UE based on current conditions	ICs Needed?	ICs Called for in the Decision Documents?	Impacted Parcel(s)	IC Objective	Title of IC Instrument Implemented and Date (or planned)
Groundwater	Yes	Yes	FFTA	0	Remedial Design for LUCs at FFTA, NASA WFF, Wallops Island, Virginia. (Tetra Tech, 2008c).

<u>Notes</u>

UU/UE - Unlimited Use and unrestricted exposure

IC - Institutional Control

TABLE 5-1 CHEMICALS OF CONCERN - WASTE OIL DUMP FIVE-YEAR REVIEW NASA WALLOPS FLIGHT FACILITY, WALLOPS ISLAND, VIRGINIA

Exposure Scenario	Chemical of Concern (COC)	Range of Detected Concentrations During Remedial Investigation (µg/L)	Cleanup Level (µg/L)	Basis of Cleanup Level
Future Resident exposed to groundwater via	Benzene	0.17 – 33	5	MCL
ingestion, dermal contact, inhalation	Arsenic	0.94 – 58	10	MCL

Notes

Table/information adapted from *Record of Decision (ROD) for WOD* (Tetra Tech, 2008b). μ g/L - microgram(s) per liter

TABLE 5-2 CHRONOLOGY OF EVENTS - WASTE OIL DUMP FIVE-YEAR REVIEW NASA WALLOPS FLIGHT FACILITY, WALLOPS ISLAND, VIRGINIA

EVENT / DOCUMENT	DATE
WOD Site Operations	circa 1940s-1950s
Excavation of petroleum-impacted soil (subsequent to 1986 VDEQ inspection findings)	1986
Preliminary Assessment (PA) (NASA, 1988)	1988
Site Investigation (SI) (Ebasco, 1990)	1990
Additional Monitoring well installation for adjacent FUD Site 15 (Debris Pile) revealed solvent- and petroleum-related contamination.	1998
Remedial Investigation (RI) / Feasibility Study (FS) (Versar, 2001)	1998-2000; 2001
Supplemental RI (Tetra Tech, 2004c)	2003-2004
Chromium Speciation Study (NASA, 2004)	2004
Feasibility Study (FS) (Tetra Tech, 2005b)	October 2005
Proposed Remedial Action Plan (PRAP) (Tetra Tech, 2007b)	January 2007
Record of Decision (ROD) (Tetra Tech, 2008b)	March 2008
Land Use Control (LUC) Remedial Design (RD) (Tetra Tech, 2008d)	October 2008
Pilot Study Work Plan (Tetra Tech, 2008e)	November 2008
Pilot Study Biostimulation Injection Implementation (Tetra Tech, 2008e and 2009b)	December 2008
Remedial Action Work Plan (Tetra Tech, 2009d)	September 2009
(Note - Pilot Study Report appended to Remedial Action Work Plan)	•
Full Biostimulation Injection Remedial Action Implementation	December 2009
Long-Term Monitoring (LTM) Plan (Tetra Tech, 2009e)	October 2009
Data Summary Report – 6-month Post-Injection Sampling Event (Tetra Tech, 2010e)	August 2010
Remedial Action Completion Report (Tetra Tech, 2011a)	April 2011
2010 Annual LTM Report (Tetra Tech, 2011c)	November 2011
2011 Annual LTM Report (Tetra Tech, 2012b)	July 2012
Data Summary Report - March 2012 Groundwater Monitoring Event (Tetra Tech, 2012d)	May 2012
LTM Plan – Revision 1 (Tetra Tech, 2012f)	July 2012
2012 Annual LTM Report (Tetra Tech, 2013b)	May 2013
First Five-Year Review (NASA, 2014)	January 2014
Data Summary Report - March 2013 Groundwater Monitoring Event (Tetra Tech, 2013c)	June 2013
LTM Plan – Revision 2 (Tetra Tech, 2014b)	February 2014
2013 Annual LTM Report (Tetra Tech, 2014d)	February 2014
Data Summary Report - March 2014 Groundwater Monitoring Event (Tetra Tech, 2014f)	June 2014
2014 Annual LTM Report (Tetra Tech, 2015b)	April 2015
Data Summary Report - March 2015 Groundwater Monitoring Event (Tetra Tech, 2015d)	May 2015
LTM Plan – Revision 3 (Tetra Tech, 2015)	September 2015
2015 Annual LTM Report (Tetra Tech, 2016b)	April 2016
Data Summary Report - April 2016 Groundwater Monitoring Event (Tetra Tech, 2016c)	June 2016
2016 Annual LTM Report (Tetra Tech, 2017)	February 2017
Data Summary Report – October 2017 Groundwater Sampling Event (NASA, 2018a)	March 2018
Second Five-Year Review (NASA, 2019b)	February 2019
Data Summary Report – July 2020 Groundwater Monitoring (NASA, 2021b)	February 2021
LTM Plan – Revision 4 (NASA, 2022e)	September 2022
Data Summary Report – September 2022 Groundwater Monitoring (NASA, 2023b)	March 2023

<u>Notes</u> LTM and enforcement of LUCs ongoing

TABLE 5-3 SUMMARY OF IMPLEMENTED INSTITUTIONAL CONTROLS-WASTE OIL DUMP FIVE-YEAR REVIEW NASA WALLOPS FLIGHT FACILITY, WALLOPS ISLAND, VIRGINIA

Media, engineered controls, and areas that do not support UU/UE based on current conditions	ICs Needed?	ICs Called for in the Decision Documents?	Impacted Parcel(s)	IC Objective	Title of IC Instrument Implemented and Date (or planned)
Groundwater	Yes	Yes	WOD	No use of groundwater as a source of drinking water is permitted until concentrations of hazardous substances in groundwater are at such levels to allow for unrestricted use and exposure. No use of groundwater other than for environmental testing is permitted without an approved plan. Construction and/or development of commercial or residential buildings is prohibited. This is a controlled area undergoing Environmental Remediation. Any planned use or activity in this area must be approved by the Environmental Office, Code 250.	Remedial Design for LUCs at WOD, NASA WFF, Wallops Island, Virginia. (Tetra Tech, 2008d).

<u>Notes</u>

UU/UE - Unlimited Use and unrestricted exposure

IC - Institutional Control

This page intentionally left blank

Nandua swimmers fare well in states

The Nandua Swim team finished out its season at the Class 1 and 2 Swim and Dive Championships on Saturday, Feb. 18, at the Christiansburg Aquatic Center in Christiansburg, Va.

The team had 16 swimmers move on from the Region 2A Championship and compete at the State Championship, with all 16 swimmers advancing to the finals session.

The girls team raced hard to a thirdplace finish out of 31 teams. This season,

es. Junior Grace Bentley took fifth in the 200-yard individual medley and third in the 100-yard backstroke. She is the school record holder in both events.

Freshman Sarah Bentley earned fifth in the 100-yard freestyle and fourth in the 100-yard breaststroke. The 100 breaststroke time was a new school record. Junior Emma Cathey was sixth in the 100-yard butterfly. Sophomore Meya Charnock set a new school record in the 500-yard freestyle and earned a fourth-place medal.

Morgan Johnson placed ninth in the

100-vard breaststroke, Emma Cathey placed ninth in the 200-vard freestyle and Meya Charnock was ninth in the 100-yard Backstroke

The girls 400-yard freestyle relay of Robyn Anderson, Emma Holt, Morgan Johnson, and Jordan Penland took 11th place. The boys team finished 15 out of 29

teams. The boys team had one podium finisher, Camden Lewis with a new school record in the 500-vard freestvle.

Lewis earned a third-place medal in the

event.

There were eight boys who scored points for the team in the finals session of the meet

Austin Wert placed 14th in 50-vard freestyle and 11th in 100-yard freestyle. Zac Smith placed 13th in the 100-yard

backstroke with a new school record in the event. Lucas Elliott swam the 200-yard individual medley and finished 14th.

Camden Lewis took 10th in the 100-yard breaststroke, breaking his previous school record.

Figure 1-3. Public Notice of Start of Five-Year Review

Town of Chincoteague GAC Treatment System

Boat Basin

Area 1 -Building B-129 Fire Station

Area 10 -Lear Jet Crash Site

SOIL AND SEDIMENT PFOS SUMMARY FROM EXPANDED SI FFTA (PFAS AREA 9) NASA WALLOPS FLIGHT FACILITY WALLOPS ISLAND, VIRGINIA

12	FILE	112G9158		SCALE AS NOTED
	FIGURE NO.	4-5	REV	DATE 1/9/2023

N

SITE LAYOUT MAP WASTE OIL DUMP NASA WALLOPS FLIGHT FACILITY WALLOPS ISLAND, VIRGINIA

FILE	112G08336		SCALE
	112000330		AS NOTED
FIGURE NO.	E 1	REV	DATE
5-1		7/12/2018	

, CN	5-2	10/06/2023
1	FIGURE NO.	REV DATE
	112G09524	AS NOTED
3.4	FILE ALCORDERA	SCALE

This page intentionally left blank

APPENDIX A

ANALYTICAL DATA AND HISTORICAL INFORMATION

Table A-2FFTA PFAS Data Summary TableTable A-3WOD LTM Data Summary TableTable A-4WOD PFAS Data Summary TableFigure A-1FFTA Water Levels (September 2022)Figure A-2WOD Water Levels (September 2022)	Table A-3 Table A-4 Figure A-1	WOD LTM Data Summary Table WOD PFAS Data Summary Table FFTA Water Levels (September 2022)
---	--------------------------------------	---

This page intentionally left blank

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 1 of 23

LOCATION			FFTA-MW055D								
SAMPLE ID	Cleanup	FFTA-MW055D-20130320	FFTA-MW055D-20130905	FFTA-MW055D-20140318	FFTA-MW055D-20140924	FFTA-MW055D-20150318	FFTA-MW055D-20151202	FFTA-MW055D-20160927			
SAMPLE DATE	Level	20130320	20130905	20140318	20140924	20150318	20151202	20160927			
SAMPLE CODE	(µg/L)	NORMAL									
VOLATILES (µg/L)				r							
BENZENE	5	0.11 U	0.25 U	0.25 U	0.11 U	0.11 U	0.26 U	0.26 U			
CIS-1,2-DICHLOROETHENE	70	0.24 U	NA	NA	NA	0.24 U	NA	NA			
SEMIVOLATILES (µg/L)											
3&4-METHYLPHENOL	27	1.5	16	10 U	NA	NA	5.4 U	0.46 U			
4-METHYLPHENOL	27	NA	NA	NA	0.61 J	0.21 U	NA	NA			
NAPHTHALENE	16	0.013 U	13	5 U	0.024 U	0.06 J	2.1 U	0.067 U			
METALS (μg/L)											
ARSENIC	10	3.8	12	3.2 J	0.29 U	0.47 J	2.3 U	2.3 U			
MANGANESE	124	50	65	31	30	29	9.32	15.8			
DISSOLVED METALS (µg/L)											
ARSENIC	10	3.1	11	1.4 J	0.29 U	0.37 J	2.3 U	2.3 U			
MANGANESE	124	57	66	23	29	31	7.88	15			
FIELD (MG/L)											
ALKALINITY	NA	10 <	10 <	10	NA	NA	NA	NA			
DISSOLVED OXYGEN	NA	5	0.1	4	NA	NA	NA	NA			
DISSOLVED OXYGEN - HORIBA	NA	2.19	0	6.54	NA	NA	NA	NA			
FERROUS IRON	NA	1	5	1	NA	NA	NA	NA			
HYDROGEN SULFIDE	NA	0	1.5	0	NA	NA	NA	NA			
NITRATE	NA	0	0	0	NA	NA	NA	NA			
NITRITE	NA	0	0	0	NA	NA	NA	NA			
SALINITY (%)	NA	NA	NA	0	NA	NA	NA	NA			
TEMPERATURE (deg C)	NA	14.1	20.89	10.82	NA	NA	NA	NA			
SPECIFIC CONDUCTANCE (ms/cm)	NA	0.72	0.072	0.076	NA	NA	NA	NA			
OXIDATION REDUCTION POTENTIAL (mv)	NA	224	-79	133	NA	NA	NA	NA			
TURBIDITY (ntu)	NA	1.4	0.41	5.35	NA	NA	NA	NA			
PH (s.u.)	NA	4.42	5.81	5.53	NA	NA	NA	NA			

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 2 of 23

LOCATION		FFTA-MW055D									
SAMPLE ID	FFTA-MW55D-20170622	FFTA-MW55D-20170622- AVG	FFTA-MW55D-20170622-D	FFTA-MW055D-20180327	FFTA-MW055D-20181212	FFTA-MW055D-20200721	FFTA-MW055D-20210629	FFTA-MW055D-20220927			
SAMPLE DATE	20170622	20170622	20170622	20180327	20181212	20200721	20210629	20220927			
SAMPLE CODE	ORIG	AVG	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL			
VOLATILES (µg/L)		1	1		I						
BENZENE	0.26 U	0.26 U	0.26 U	0.26 U	NA	NA	NA	NA			
CIS-1,2-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA			
SEMIVOLATILES (µg/L)											
3&4-METHYLPHENOL	24	24	24	8.6	7.8 J	9.5 U	NA	NA			
4-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA			
NAPHTHALENE	13	13.5	14	3.2	3.2	9.5 U	8.8	0.23 U			
METALS (μg/L)											
ARSENIC	11	12	13	4.6 J	4.7 J	3.3	17.4	2.8 U			
MANGANESE	175	174	173	91.9	86.2	110	93	1.4 U			
DISSOLVED METALS (µg/L)											
ARSENIC	10	11	12	4.3 K	5.0 J	3.1	15.1	2.8 U			
MANGANESE	162	165	168	97	92.7	110	80	1.4 U			
FIELD (MG/L)											
ALKALINITY	NA	NA	NA	NA	NA	NA	NA	NA			
DISSOLVED OXYGEN	NA	NA	NA	NA	3	0	2	NA			
DISSOLVED OXYGEN - HORIBA	NA	NA	NA	4.0	2.4	8.5	1.25	4.44			
FERROUS IRON	NA	NA	NA	NA	NA	NA	NA	NA			
HYDROGEN SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA			
NITRATE	NA	NA	NA	NA	NA	NA	NA	NA			
NITRITE	NA	NA	NA	NA	NA	NA	NA	NA			
SALINITY (%)	NA	NA	NA	NA	NA	NA	NA	NA			
TEMPERATURE (deg C)	NA	NA	NA	14.01	17.21	23.12	19.73	19.46			
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	NA	0.072	0.076	0.07	0.079	0.054			
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	NA	101	81	79	-8	272			
TURBIDITY (ntu)	NA	NA	NA	4.3	0.9	4.8	6.19	1.3			
PH (s.u.)	NA	NA	NA	5.76	5.47	5.58	5.72	4.92			

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 3 of 23

LOCATION		FFTA-MW055S									
SAMPLE ID	FFTA-MW055S-20130320	FFTA-MW055S-20130320- AVG	FFTA-MW055S-20130320-D	FFTA-MW055S-20130905	FFTA-MW055S-20130905- AVG	FFTA-MW055S-20130905-D	FFTA-MW055S-20140318	FFTA-MW055S-20140318- AVG			
SAMPLE DATE	20130320	20130320	20130320	20130905	20130905	20130905	20140318	20140318			
SAMPLE CODE	ORIG	AVG	DUP	ORIG	AVG	DUP	ORIG	AVG			
VOLATILES (µg/L)						•					
BENZENE	0.19 J	0.21	0.23 J	0.42 J	0.47	0.52 J	0.5 J	0.485			
CIS-1,2-DICHLOROETHENE	0.26 J	0.19	0.24 U	NA	NA	NA	NA	NA			
SEMIVOLATILES (µg/L)											
3&4-METHYLPHENOL	50	55.5	61	44	44	44	49 J	49			
4-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA			
NAPHTHALENE	12	13.5	15	46	46.5	47	44 J	44			
METALS (μg/L)											
ARSENIC	23	22	21	24	23.5	23	28	27			
MANGANESE	350	340	330	430	430	430	440	430			
DISSOLVED METALS (µg/L)											
ARSENIC	24	24.5	25	24	23	22	23	23			
MANGANESE	370	375	380	410	405	400	410	410			
FIELD (MG/L)											
ALKALINITY	35	35	NA	12	12	NA	20	20			
DISSOLVED OXYGEN	0.2	0.2	NA	2	2	NA	0.2	0.2			
DISSOLVED OXYGEN - HORIBA	0.1	0.1	NA	1.78	1.78	NA	0.31	0.31			
FERROUS IRON	2.6	2.6	NA	4.6	4.6	NA	1.2	1.2			
HYDROGEN SULFIDE	0	0	NA	0.3	0.3	NA	0	0			
NITRATE	0	0	NA	0	0	NA	0	0			
NITRITE	0	0	NA	0	0	NA	0	0			
SALINITY (%)	NA	NA	NA	NA	NA	NA	0	0			
TEMPERATURE (deg C)	14.26	14.26	NA	18.23	18.23	NA	11.49	11.49			
SPECIFIC CONDUCTANCE (ms/cm)	0.107	0.107	NA	0.058	0.058	NA	0.179	0.179			
OXIDATION REDUCTION POTENTIAL (mv)	49	49	NA	-28	-28	NA	-39	-39			
TURBIDITY (ntu)	2.95	2.95	NA	9.26	9.26	NA	0.69	0.69			
PH (s.u.)	5.09	5.09	NA	5.68	5.68	NA	5.41	5.41			

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 4 of 23

LOCATION		FFTA-MW055S											
SAMPLE ID	FFTA-MW055S-20140318-D	FFTA-MW055S-20140924	FFTA-MW055S-20140924- AVG	FFTA-MW055S-20140924-D	FFTA-MW055S-20150318	FFTA-MW055S-20150318- AVG	FFTA-MW055S-20150318-D	FFTA-MW055S-20151202					
SAMPLE DATE	20140318	20140924	20140924	20140924	20150318	20150318	20150318	20151202					
SAMPLE CODE	DUP	ORIG	AVG	DUP	ORIG	AVG	DUP	ORIG					
VOLATILES (µg/L)													
BENZENE	0.47 J	0.31 J	0.31	0.31 J	0.28 J	0.285	0.29 J	0.26 U					
CIS-1,2-DICHLOROETHENE	NA	NA	NA	NA	0.28 J	0.28	0.28 J	NA					
SEMIVOLATILES (µg/L)													
3&4-METHYLPHENOL	49	NA	NA	NA	NA	NA	NA	15					
4-METHYLPHENOL	NA	9.7	9.75	9.8	24	21.5	19	NA					
NAPHTHALENE	44 J	15	15	15	1.4 J	1.17	0.94 J	29 J					
METALS (μg/L)													
ARSENIC	26	16	16.5	17	26	26.5	27	27.8					
MANGANESE	420	200	205	210	300	300	300	294					
DISSOLVED METALS (µg/L)													
ARSENIC	23	15	15.5	16	27	27	27	25.3					
MANGANESE	410	210	210	210	320	315	310	268					
FIELD (MG/L)													
ALKALINITY	NA	NA	NA	NA	NA	NA	NA	NA					
DISSOLVED OXYGEN	NA	NA	NA	NA	NA	NA	NA	NA					
DISSOLVED OXYGEN - HORIBA	NA	NA	NA	NA	NA	NA	NA	NA					
FERROUS IRON	NA	NA	NA	NA	NA	NA	NA	NA					
HYDROGEN SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA					
NITRATE	NA	NA	NA	NA	NA	NA	NA	NA					
NITRITE	NA	NA	NA	NA	NA	NA	NA	NA					
SALINITY (%)	NA	NA	NA	NA	NA	NA	NA	NA					
TEMPERATURE (deg C)	NA	NA	NA	NA	NA	NA	NA	NA					
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	NA	NA	NA	NA	NA	NA					
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	NA	NA	NA	NA	NA	NA					
TURBIDITY (ntu)	NA	NA	NA	NA	NA	NA	NA	NA					
PH (s.u.)	NA	NA	NA	NA	NA	NA	NA	NA					

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 5 of 23

LOCATION		FFTA-MW055S									
SAMPLE ID	FFTA-MW055S-20151202- AVG	FFTA-MW055S-20151202-D	FFTA-MW055S-20160927	FFTA-MW055S-20160927- AVG	FFTA-MW055S-20160927-D	FFTA-MW55S-20170622	FFTA-MW055S-20180327	FFTA-MW055S-20181212			
SAMPLE DATE	20151202	20151202	20160927	20160927	20160927	20170622	20180327	20181212			
SAMPLE CODE	AVG	DUP	ORIG	AVG	DUP	NORMAL	NORMAL	NORMAL			
VOLATILES (µg/L)											
BENZENE	0.235	0.34 J	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	NA			
CIS-1,2-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA			
SEMIVOLATILES (µg/L)											
3&4-METHYLPHENOL	17	19	28 J	23	18 J	14 J-	5.6	9			
4-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA			
NAPHTHALENE	35	41 J	27 J	25.5	24 J	12 J-	27	28			
METALS (μg/L)											
ARSENIC	28.85	29.9	23	23.2	23.4	22	15	13			
MANGANESE	303	312	270	265	260	189	160	146			
DISSOLVED METALS (µg/L)											
ARSENIC	26.7	28.1	22	21.5	21	22	13	11			
MANGANESE	284	300	294	283.5	273	194	160	142			
FIELD (MG/L)											
ALKALINITY	NA	NA	NA	NA	NA	NA	NA	NA			
DISSOLVED OXYGEN	NA	NA	NA	NA	NA	NA	1	2			
DISSOLVED OXYGEN - HORIBA	NA	NA	NA	NA	NA	NA	1.21	0			
FERROUS IRON	NA	NA	NA	NA	NA	NA	NA	NA			
HYDROGEN SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA			
NITRATE	NA	NA	NA	NA	NA	NA	NA	NA			
NITRITE	NA	NA	NA	NA	NA	NA	NA	NA			
SALINITY (%)	NA	NA	NA	NA	NA	NA	NA	NA			
TEMPERATURE (deg C)	NA	NA	NA	NA	NA	NA	13.52	17.01			
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	NA	NA	NA	NA	0.099	0.098			
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	NA	NA	NA	NA	-24	21			
TURBIDITY (ntu)	NA	NA	NA	NA	NA	NA	3.4	3.9			
PH (s.u.)	NA	NA	NA	NA	NA	NA	5.88	5.67			

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 6 of 23

LOCATION		FFTA-MW055S				FFTA-MW056D		
SAMPLE ID	FFTA-MW055S-20200721	FFTA-MW055S-20210629	FFTA-MW055S-20220927	FFTA-MW056D-20130319	FFTA-MW056D-20130904	FFTA-MW056D-20140317	FFTA-MW056D-20140923	FFTA-MW056D-20150317
SAMPLE DATE SAMPLE CODE	20200721 NORMAL	20210629 NORMAL	20210629 NORMAL	20130319 NORMAL	20130904 NORMAL	20140317 NORMAL	20140923 NORMAL	20150317 NORMAL
VOLATILES (µg/L)	NORMAL							
BENZENE	NA	NA	NA	0.42 J	0.8 J	0.91 J	0.49 J	0.36 J
CIS-1,2-DICHLOROETHENE	NA	NA	NA	2.8	NA	NA	NA	1.9
SEMIVOLATILES (µg/L)				-				
3&4-METHYLPHENOL	20	NA	NA	0.099 U	2 U	9.6 U	NA	NA
4-METHYLPHENOL	NA	NA	NA	NA	NA	NA	0.21 U	0.22 U
NAPHTHALENE	38 J	39.4 J-	0.30 J	0.015 U	1 U	4.8 U	0.023 U	0.1 J
METALS (µg/L)				•	-	• •	-	
ARSENIC	20	20.2	6.1	3.3	1.2 U	1.2 U	2.7	0.93 J
MANGANESE	150	163	24.5	700	940	930	910	790
DISSOLVED METALS (µg/L)								
ARSENIC	21	16.7	6.1	3.3	1.2 U	1.3 J	2.4	0.88 J
MANGANESE	160	141	23.6	710	950	920	850	780
FIELD (MG/L)								
ALKALINITY	NA	NA	NA	27	14	25	NA	NA
DISSOLVED OXYGEN	0	0.6	NA	1	1	0.8	NA	NA
DISSOLVED OXYGEN - HORIBA	0.01	0	1.34	1.6	0.55	0.43	NA	NA
FERROUS IRON	NA	NA	NA	0.2	0	0.2	NA	NA
HYDROGEN SULFIDE	NA	NA	NA	0	0	0	NA	NA
NITRATE	NA	NA	NA	0	0	0	NA	NA
NITRITE	NA	NA	NA	0	0	0	NA	NA
SALINITY (%)	NA	NA	NA	NA	NA	0	NA	NA
TEMPERATURE (deg C)	22.37	24.42	19.9	15.54	16.04	12.12	NA	NA
SPECIFIC CONDUCTANCE (ms/cm)	0.139	0.076	0.054	0.084	0.082	0.122	NA	NA
OXIDATION REDUCTION POTENTIAL (mv)	-9	-83	104	115	45	52	NA	NA
TURBIDITY (ntu)	5.4	0	2.18	0.21	0.35	0.05	NA	NA
PH (s.u.)	5.42	5.8	5.41	5.99	6	6.14	NA	NA

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 7 of 23

LOCATION				FFTA-N	IW056D			
SAMPLE ID	FFTA-MW056D-20151201	FFTA-MW056D-20160928	FFTA-MW56D-20170621	FFTA-MW56D-20180327	FFTA-MW56D-20181212	FFTA-MW56D-20200722	FFTA-MW56D-20210629	FFTA-MW56D-20220928
SAMPLE DATE SAMPLE CODE	20151201 NORMAL	20160928 NORMAL	20170621 NORMAL	20180327 NORMAL	20181212 NORMAL	20200722 NORMAL	20210629 NORMAL	20220928 NORMAL
VOLATILES (µg/L)								
BENZENE	0.26 U	0.26 U	0.26 U	0.26 U	NA	NA	NA	NA
CIS-1,2-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	NA	NA
SEMIVOLATILES (µg/L)				•		•	•	
3&4-METHYLPHENOL	5.6 U	0.44 U	0.42 U	0.42 U	0.42 U	9.5 U	NA	NA
4-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA
NAPHTHALENE	2.2 U	0.064 U	0.060 U	0.060 U	0.060 U	9.5 U	0.48 U	0.24 U
METALS (µg/L)								
ARSENIC	3.8 U	2.3 U	2.5 J	2.3 U	2.3 U	260	1.6 J	2.8 U
MANGANESE	650	560	303	149	239	41000	817	121
DISSOLVED METALS (µg/L)								
ARSENIC	2.3 U	2.3 U	4 U	2.3 U	2.3 U	3	1.3 U	2.8 U
MANGANESE	644	520	251	129	131	44	121	83
FIELD (MG/L)								
ALKALINITY	NA	NA	NA	NA	NA	NA	NA	NA
DISSOLVED OXYGEN	NA	NA	NA	NA	2	4	4	NA
DISSOLVED OXYGEN - HORIBA	NA	NA	NA	NA	1.38	3.95	0.41	2.83
FERROUS IRON	NA	NA	NA	NA	NA	NA	NA	NA
HYDROGEN SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA
NITRATE	NA	NA	NA	NA	NA	NA	NA	NA
NITRITE	NA	NA	NA	NA	NA	NA	NA	NA
SALINITY (%)	NA	NA	NA	NA	NA	NA	NA	NA
TEMPERATURE (deg C)	NA	NA	NA	NA	16.93	25.31	20.33	17.72
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	NA	NA	0.089	0.082	0.061	0.066
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	NA	NA	242	183	126	342
TURBIDITY (ntu)	NA	NA	NA	NA	0	244	0.1	16.7
PH (s.u.)	NA	NA	NA	NA	5.83	6.2	6.07	6.06

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 8 of 23

LOCATION				FFTA-N	1W057S			
SAMPLE ID	FFTA-MW057S-20130319	FFTA-MW057S-20130904	FFTA-MW057S-20140317	FFTA-MW057S-20140923	FFTA-MW057S-20150317	FFTA-MW057S-20151201	FFTA-MW057S-20160928	FFTA-MW57S-20170620
SAMPLE DATE SAMPLE CODE	20130319 NORMAL	20130904 NORMAL	20140317 NORMAL	20140923 NORMAL	20150317 NORMAL	20151201 NORMAL	20160928 NORMAL	20170620 NORMAL
VOLATILES (µg/L)						1		
BENZENE	0.11 U	0.45 J	0.32 J	0.11 U	0.11 U	0.26 U	0.26 U	0.26 U
CIS-1,2-DICHLOROETHENE	0.24 U	NA	NA	NA	0.24 U	NA	NA	NA
SEMIVOLATILES (µg/L)				-	•	•	•	
3&4-METHYLPHENOL	0.088 U	1.9 U	10 U	NA	NA	5.5 U	0.45 U	0.42 U
4-METHYLPHENOL	NA	NA	NA	0.19 U	0.21 U	NA	NA	NA
NAPHTHALENE	0.22	4.1 J	5.1 U	0.49	0.33	2.2 U	0.065 U	0.60 U
METALS (µg/L)								
ARSENIC	2.2	1.2 U	1.2 U	0.29 U	0.48 J	2.3 U	2.3 U	4 U
MANGANESE	20	140	220	250	320	188	156	25.6
DISSOLVED METALS (µg/L)								
ARSENIC	3.2	1.2 U	1.2 U	0.29 U	0.49 J	2.3 U	2.3 U	4 U
MANGANESE	7.1	130	160	250	280	181	153	24.3
FIELD (MG/L)								
ALKALINITY	10 <	15	20	NA	NA	NA	NA	NA
DISSOLVED OXYGEN	5	1	2	NA	NA	NA	NA	NA
DISSOLVED OXYGEN - HORIBA	5.08	0	1.53	NA	NA	NA	NA	NA
FERROUS IRON	0	0	0	NA	NA	NA	NA	NA
HYDROGEN SULFIDE	0	0.6	0	NA	NA	NA	NA	NA
NITRATE	0	0	0	NA	NA	NA	NA	NA
NITRITE	0	0	0	NA	NA	NA	NA	NA
SALINITY (%)	NA	NA	0	NA	NA	NA	NA	NA
TEMPERATURE (deg C)	15.78	16.07	11.58	NA	NA	NA	NA	NA
SPECIFIC CONDUCTANCE (ms/cm)	0.116	0.75	0.081	NA	NA	NA	NA	NA
OXIDATION REDUCTION POTENTIAL (mv)	232	301	226	NA	NA	NA	NA	NA
TURBIDITY (ntu)	0.72	0.62	3.05	NA	NA	NA	NA	NA
PH (s.u.)	5.65	5.4	5.45	NA	NA	NA	NA	NA

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 9 of 23

LOCATION			FFTA-MW057S				FFTA-MW058S	
SAMPLE ID	FFTA-MW57S-20180328	FFTA-MW57S-20181213	FFTA-MW57S-20200722	FFTA-MW57S-20210630	FFTA-MW57S-20220928	FFTA-MW058S-20130319	FFTA-MW058S-20130904	FFTA-MW058S-20140318
SAMPLE DATE SAMPLE CODE	20180328 NORMAL	20181213 NORMAL	20200722 NORMAL	20210630 NORMAL	20220928 NORMAL	20130319 NORMAL	20130904 NORMAL	20140318 NORMAL
VOLATILES (µg/L)	NORMAL	NORWAL	NORMAL	NORMAL	NORMAL	NORWAL	NORMAL	NORMAL
BENZENE	0.26 U	NA	NA	NA	NA	1.1	1.6 J	2.6 J
CIS-1,2-DICHLOROETHENE	NA	NA	NA	NA	NA	0.34 J	NA	NA
SEMIVOLATILES (µg/L)		103						
3&4-METHYLPHENOL	0.42 U	0.042 U	9.5 U	NA	NA	1	1.9 U	10 U
4-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA
NAPHTHALENE	0.60 U	0.060 U	9.5 U	0.48 U	0.23 U	21	16	40 J
METALS (µg/L)								
ARSENIC	2.3 U	2.3 U	3.0 U	1.3 U	2.8 U	5.7	6.7 J	10
MANGANESE	0.77 U	216	150	436	149	490	1100	1800
DISSOLVED METALS (µg/L)						• •		
ARSENIC	3.0 J	2.3 J	3.0 U	1.3 U	2.8 U	5.7	7.2 J	9.9 J
MANGANESE	12.8	113	160	1.7 J	131	510	1100	1700
FIELD (MG/L)								
ALKALINITY	NA	NA	NA	NA	NA	60	25	50
DISSOLVED OXYGEN	6	3	1	4	NA	1	0.4	0
DISSOLVED OXYGEN - HORIBA	6.5	1.41	0.17	1.78	1.46	0.88	0	0.55
FERROUS IRON	NA	NA	NA	NA	NA	2	0	3.2
HYDROGEN SULFIDE	NA	NA	NA	NA	NA	0	0	0
NITRATE	NA	NA	NA	NA	NA	0	0	0
NITRITE	NA	NA	NA	NA	NA	0	0	0
SALINITY (%)	NA	NA	NA	NA	NA	NA	NA	0.1
TEMPERATURE (deg C)	14.15	16.09	17.61	19.92	18.03	13.1	22.32	11.07
SPECIFIC CONDUCTANCE (ms/cm)	0.175	0.086	0.100	0.294	0.075	0.138	0.154	0.2
OXIDATION REDUCTION POTENTIAL (mv)	255	261	249	232	320	-55	66	-85
TURBIDITY (ntu)	0	0	0.8	4.56	0.66	3.3	0.6	0.61
PH (s.u.)	5.69	5.83	5.74	5.7	6.02	6.27	5.77	6.08

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 10 of 23

LOCATION				FFTA-N	W058S			
SAMPLE ID	FFTA-MW058S-20140923	FFTA-MW058S-20150317	FFTA-MW058S-20151201	FFTA-MW058S-20160927	FFTA-MW58S-20170621	FFTA-MW58S-20180326	FFTA-MW58S-20181212	FFTA-MW58S-20200721
SAMPLE DATE SAMPLE CODE	20140923 NORMAL	20150317 NORMAL	20151201 NORMAL	20160927 NORMAL	20170621 NORMAL	20180326 NORMAL	20181212 NORMAL	20200721 NORMAL
VOLATILES (µg/L)								
BENZENE	1.4	1.1	0.44 J	0.79 J	0.26 U	0.50 J	NA	NA
CIS-1,2-DICHLOROETHENE	NA	0.24 U	NA	NA	NA	NA	NA	NA
SEMIVOLATILES (µg/L)								
3&4-METHYLPHENOL	NA	NA	5.8 U	1.1 J	0.42 U	2.6	2.2	9.5 U
4-METHYLPHENOL	1.5	0.23 U	NA	NA	NA	NA	NA	NA
NAPHTHALENE	11	17	12	15	11	17	18	12
METALS (μg/L)		• •						• •
ARSENIC	9.6	8.3	13	17	7.9	15	21	20
MANGANESE	1000	1100	580	425	271	432	663	810
DISSOLVED METALS (µg/L)		•						•
ARSENIC	8.7	8.5	13	20	7.7	17	19	21
MANGANESE	1000	1100	553	420	271	417	649	820
FIELD (MG/L)								
ALKALINITY	NA	NA	NA	NA	NA	NA	NA	NA
DISSOLVED OXYGEN	NA	NA	NA	NA	NA	0	0	0
DISSOLVED OXYGEN - HORIBA	NA	NA	NA	NA	NA	0.73	0	0
FERROUS IRON	NA	NA	NA	NA	NA	NA	NA	NA
HYDROGEN SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA
NITRATE	NA	NA	NA	NA	NA	NA	NA	NA
NITRITE	NA	NA	NA	NA	NA	NA	NA	NA
SALINITY (%)	NA	NA	NA	NA	NA	NA	NA	NA
TEMPERATURE (deg C)	NA	NA	NA	NA	NA	14.25	16.79	26.19
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	NA	NA	NA	0.193	0.169	0.117
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	NA	NA	NA	-55	-106	-78
TURBIDITY (ntu)	NA	NA	NA	NA	NA	0	2.3	10.9
PH (s.u.)	NA	NA	NA	NA	NA	6.4	6.52	6.6

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 11 of 23

LOCATION	FFTA-N	1W058S			FFTA-N	/W061I		
SAMPLE ID	FFTA-MW58S-20210629	FFTA-MW58S-20220927	FFTA-MW061I-20130319	FFTA-MW061I-20130521	FFTA-MW061I-20130521- AVG	FFTA-MW061I-20130521-D	FFTA-MW061I-20130905	FFTA-MW061I-20140317
SAMPLE DATE	20210629	20220927	20130319	20130521	20130521	20130521	20130905	20140317
SAMPLE CODE	NORMAL	NORMAL	NORMAL	ORIG	AVG	DUP	NORMAL	NORMAL
VOLATILES (µg/L)		-			I	1		
BENZENE	NA	NA	1.3	NA	NA	NA	1.1 J	0.25 U
CIS-1,2-DICHLOROETHENE	NA	NA	0.59 J	NA	NA	NA	NA	NA
SEMIVOLATILES (µg/L)								
3&4-METHYLPHENOL	NA	NA	0.087 U	NA	NA	NA	1.9 U	9.7 U
4-METHYLPHENOL	NA	NA	NA	NA	NA	NA	NA	NA
NAPHTHALENE	0.48 U	21.4	11	NA	NA	NA	6.8 J	4.9 U
METALS (µg/L)								
ARSENIC	7.7 J	38.8	370	6	6.15	6.3	18	23
MANGANESE	835	422	1400	1700	1650	1600	1100	960
DISSOLVED METALS (µg/L)								
ARSENIC	7.6 J	38.4	11	6.1	6.05	6	8.5 J	8.4 J
MANGANESE	885	441	1600	1600	1600	1600	1100	960
FIELD (MG/L)								
ALKALINITY	NA	NA	32	NA	NA	NA	30	14
DISSOLVED OXYGEN	0.8	NA	0	NA	NA	NA	0	0.05
DISSOLVED OXYGEN - HORIBA	0.01	0.02	0.41	NA	NA	NA	0	0.29
FERROUS IRON	NA	NA	3	NA	NA	NA	1.2	2.8
HYDROGEN SULFIDE	NA	NA	0	NA	NA	NA	0	0
NITRATE	NA	NA	0	NA	NA	NA	0	0
NITRITE	NA	NA	0	NA	NA	NA	0	0
SALINITY (%)	NA	NA	NA	NA	NA	NA	NA	0
TEMPERATURE (deg C)	22.03	19.6	14.5	NA	NA	NA	17.54	10.53
SPECIFIC CONDUCTANCE (ms/cm)	0.068	0.141	0.28	NA	NA	NA	0.096	0.117
OXIDATION REDUCTION POTENTIAL (mv)	-24	-77	-41	NA	NA	NA	40	-56
TURBIDITY (ntu)	0	4.02	0.84	NA	NA	NA	5.32	9.31
PH (s.u.)	6.38	6.47	6.2	NA	NA	NA	6.1	6.45

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 12 of 23

LOCATION				FFTA-N	1W061I			
SAMPLE ID	FFTA-MW061I-20140923	FFTA-MW061I-20150317	FFTA-MW061I-20151201	FFTA-MW061I-20160928	FFTA-MW61I-20170621	FFTA-MW61I-20180326	FFTA-MW61I-20181213	FFTA-MW61I-20200721
SAMPLE DATE SAMPLE CODE	20140923 NORMAL	20150317 NORMAL	20151201 NORMAL	20160928 NORMAL	20170621 NORMAL	20180326 NORMAL	20181213 NORMAL	20200721 NORMAL
VOLATILES (µg/L)								
BENZENE	0.11 U	0.11 U	0.26 U	0.26 U	0.26 U	0.26 U	NA	NA
CIS-1,2-DICHLOROETHENE	NA	0.24 U	NA	NA	NA	NA	NA	NA
SEMIVOLATILES (µg/L)								
3&4-METHYLPHENOL	NA	NA	5.5 U	0.43 U	0.42 U	0.42 U	0.42 U	9.6 U
4-METHYLPHENOL	0.22 U	0.22 U	NA	NA	NA	NA	NA	NA
NAPHTHALENE	0.41	0.22	2.2 U	0.32	0.33	0.29	0.43	9.6 U
METALS (µg/L)								•
ARSENIC	9	7.5	5.9 U	3.5 J	14	9.2	9.2	9.3
MANGANESE	540	740	664	508	1760	748	1450	1200
DISSOLVED METALS (µg/L)								
ARSENIC	7.7	7	5 U	4.3 J	17	7.4	7.8	9.5
MANGANESE	590	740	655	502	1890	772	1460	1200
FIELD (MG/L)								
ALKALINITY	NA	NA	NA	NA	NA	NA	NA	NA
DISSOLVED OXYGEN	NA	NA	NA	NA	NA	0	0	2
DISSOLVED OXYGEN - HORIBA	NA	NA	NA	NA	NA	11.8	0	0
FERROUS IRON	NA	NA	NA	NA	NA	NA	NA	NA
HYDROGEN SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA
NITRATE	NA	NA	NA	NA	NA	NA	NA	NA
NITRITE	NA	NA	NA	NA	NA	NA	NA	NA
SALINITY (%)	NA	NA	NA	NA	NA	NA	NA	NA
TEMPERATURE (deg C)	NA	NA	NA	NA	NA	14.28	16.09	24.96
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	NA	NA	NA	0.09	0.094	0.079
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	NA	NA	NA	-39	249	-43
TURBIDITY (ntu)	NA	NA	NA	NA	NA	36	0	7.1
PH (s.u.)	NA	NA	NA	NA	NA	6.66	6.57	6.52

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 13 of 23

LOCATION	FFTA-N	1W061I			FFTA-N	1W101S		
SAMPLE ID	FFTA-MW61I-20210629	FFTA-MW61I-20220928	FFTA-MW101S-20130320	FFTA-MW101S-20130905	FFTA-MW101S-20140318	FFTA-MW101S-20140924	FFTA-MW101S-20150318	FFTA-MW101S-20151202
SAMPLE DATE SAMPLE CODE	20210629 NORMAL	20220928 NORMAL	20130320 NORMAL	20130905 NORMAL	20140318 NORMAL	20140924 NORMAL	20150318 NORMAL	20151202 NORMAL
VOLATILES (µg/L)	NONIMAL	NORMAL	NORMAL	NORMAL	NORMAL	NONINAL	NONMAL	NORMAL
BENZENE	NA	NA	0.11 U	0.25 U	0.25 U	0.11 U	0.11 U	0.26 U
CIS-1,2-DICHLOROETHENE	NA	NA	0.24 U	NA	NA	NA	0.24 U	NA
SEMIVOLATILES (µg/L)								
3&4-METHYLPHENOL	NA	NA	5.3	8.5 J	9.5 U	NA	NA	6.2 U
4-METHYLPHENOL	NA	NA	NA	NA	NA	0.21 U	0.2 U	NA
NAPHTHALENE	0.48 U	0.23 U	13	36	11 J	0.023 U	0.2	2.4 U
METALS (µg/L)			•	-	-	• •	•	
ARSENIC	13.7	9.6	5.4	11	2.1 J	0.29 U	0.45 J	2.3 U
MANGANESE	1100	1000	15	35	11	0.92 J	0.77 U	2.5
DISSOLVED METALS (µg/L)								
ARSENIC	7.6 J	10.2 J	6.3	9.9 J	2.1 J	0.29 U	0.36 J	2.3 U
MANGANESE	1190	1020	16	34	12	1.1 J	1 U	1 U
FIELD (MG/L)								
ALKALINITY	NA	NA	12	15	14	NA	NA	NA
DISSOLVED OXYGEN	1	NA	3	3	4	NA	NA	NA
DISSOLVED OXYGEN - HORIBA	0	0	3.83	1.77	-1.02	NA	NA	NA
FERROUS IRON	NA	NA	2	1	1.3	NA	NA	NA
HYDROGEN SULFIDE	NA	NA	0	0.1	0	NA	NA	NA
NITRATE	NA	NA	0	0	0	NA	NA	NA
NITRITE	NA	NA	0	0	0	NA	NA	NA
SALINITY (%)	NA	NA	NA	NA	0	NA	NA	NA
TEMPERATURE (deg C)	20.04	18.25	13.99	23.9	13.82	NA	NA	NA
SPECIFIC CONDUCTANCE (ms/cm)	0.074	0.089	0.103	0.088	0.102	NA	NA	NA
OXIDATION REDUCTION POTENTIAL (mv)	-74	-48	82	152	77	NA	NA	NA
TURBIDITY (ntu)	4.06	0.81	0.44	2.52	0.09	NA	NA	NA
PH (s.u.)	6.51	6.02	4.82	5.52	5.71	NA	NA	NA

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 14 of 23

LOCATION		FFTA-MW101S				FFTA-MW102D		
SAMPLE ID	FFTA-MW101S-20160927	FFTA-MW101S-20170622	FFTA-MW101S-20180326	FFTA-MW102D-20130319	FFTA-MW102D-20130904	FFTA-MW102D-20140318	FFTA-MW102D-20140923	FFTA-MW102D-20150317
SAMPLE DATE SAMPLE CODE	20160927 NORMAL	20170622 NORMAL	20180326 NORMAL	20130319 NORMAL	20130904 NORMAL	20140318 NORMAL	20140923 NORMAL	20150317 NORMAL
VOLATILES (µg/L)	NORMAL	NORMAL	NORMAL	Noninal	NORMAL	Noninal	NONMAL	NORMAL
BENZENE	0.26 U	0.26 U	0.26 U	0.11 U	0.25 U	0.25 U	0.11 U	0.11 U
CIS-1,2-DICHLOROETHENE	NA	NA	NA	0.24 U	NA	NA	NA	0.24 U
SEMIVOLATILES (µg/L)								
3&4-METHYLPHENOL	0.49 U	0.42 U	0.42 U	0.094 U	1.9 U	9.8 U	NA	NA
4-METHYLPHENOL	NA	NA	NA	NA	NA	NA	0.22 U	0.22 U
NAPHTHALENE	0.071 U	3.6	0.060 U	0.015 U	0.95 U	4.9 U	0.03 J	0.024 U
METALS (µg/L)		• •		•	-	• •	-	
ARSENIC	2.9 J	2.6 J	2.3 U	2.6	1.2 U	1.2 U	1.7	0.29 U
MANGANESE	4.41	15.2	45.1	5.8 B	7.9	2.7	2.4 J	3 J
DISSOLVED METALS (µg/L)								
ARSENIC	2.3 U	3.3 J	2.3 U	3.1	1.2 U	1.2 U	1.9	0.29 U
MANGANESE	4.75	15.4	21	2.2 B	1.6 J	1.6 J	0.97 J	2.1 J
FIELD (MG/L)								
ALKALINITY	NA	NA	NA	10 <	14	10 <	NA	NA
DISSOLVED OXYGEN	NA	NA	5	3	5	2	NA	NA
DISSOLVED OXYGEN - HORIBA	NA	NA	5.72	4.14	3.26	2.22	NA	NA
FERROUS IRON	NA	NA	NA	0.2	0.2	0	NA	NA
HYDROGEN SULFIDE	NA	NA	NA	0	0	0	NA	NA
NITRATE	NA	NA	NA	0	0	0	NA	NA
NITRITE	NA	NA	NA	0	0	0	NA	NA
SALINITY (%)	NA	NA	NA	NA	NA	0	NA	NA
TEMPERATURE (deg C)	NA	NA	14.1	14.34	18.07	12.99	NA	NA
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	0.067	0.098	0.09	0.094	NA	NA
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	87	254	265	279	NA	NA
TURBIDITY (ntu)	NA	NA	0	0.12	0.18	0	NA	NA
PH (s.u.)	NA	NA	6.1	5.73	5.55	4.92	NA	NA

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 15 of 23

LOCATION		FFTA-MW102D							
SAMPLE ID	FFTA-MW102D-20151201	FFTA-MW102D-20160927	FFTA-MW102D-20170621	FFTA-MW102D-20180326	FFTA-MW102D-20181212	FFTA-DUP01-20181212	FFTA-MW102D-20200722	FFTA-MW102D-20210629	
SAMPLE DATE	20151201	20160927	20170621	20180326	20181212	20181212	20200722	20210629	
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	ORIGINAL	DUPLICATE	NORMAL	NORMAL	
VOLATILES (μg/L) BENZENE	0.26 U	0.26 U	0.26 U	0.26 U	NA	NA	NA	NA	
CIS-1,2-DICHLOROETHENE	0.26 0 NA	NA	0.26 0 NA	0.28 0 NA	NA	NA NA	NA NA	NA	
SEMIVOLATILES (µg/L)	NA	NA	NA	INA	NA	NA	NA	NA	
3&4-METHYLPHENOL	5.4 U	0.43 U	0.42 U	0.42 U	0.42 U	0.42 U	9.5 U	NA	
4-METHYLPHENOL		NA	0.42_0	0.42_0	0.42 0 NA	0.42_0	NA	NA	
NAPHTHALENE	2.1 U	0.062 U	0.060 U	0.060 U	0.060 U	0.060 U	9.5 U	0.49 U	
METALS (µg/L)	2.1 0	0.002 0	0.000 0	0.000 0	0.000 0	0.000 0	5.5 0	0.45 0	
ARSENIC	2.3 U	2.3 U	4 U	2.3 U	2.3 U	2.3 U	3.0 U	1.3 U	
MANGANESE	2.4	2.6	34.9	17.1	2.2	6.88	45	2.7 U	
DISSOLVED METALS (µg/L)	2	2.0	0110	17.11		0.00	15	2.7 0	
ARSENIC	2.3 U	2.3 U	4 U	2.3 U	2.3 U	2.3 U	3.0 U	1.3 U	
MANGANESE	1.7 U	1.5 U	2.8	136	3.1	7.76	7.9	1.0 J	
FIELD (MG/L)						-			
ALKALINITY	NA	NA	NA	NA	NA	NA	NA	NA	
DISSOLVED OXYGEN	NA	NA	NA	3	2	2	4	7	
DISSOLVED OXYGEN - HORIBA	NA	NA	NA	4.14	0	0	4.85	3.39	
FERROUS IRON	NA	NA	NA	NA	NA	NA	NA	NA	
HYDROGEN SULFIDE	NA	NA	NA	NA	NA	NA	NA	NA	
NITRATE	NA	NA	NA	NA	NA	NA	NA	NA	
NITRITE	NA	NA	NA	NA	NA	NA	NA	NA	
SALINITY (%)	NA	NA	NA	NA	NA	NA	NA	NA	
TEMPERATURE (deg C)	NA	NA	NA	15.29	16.09	16.09	22.86	21.81	
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	NA	0.112	0.116	0.116	0.129	0.093	
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	NA	223	249	249	258	183	
TURBIDITY (ntu)	NA	NA	NA	2.8	0	0	57	57	
PH (s.u.)	NA	NA	NA	5.73	5.53	5.53	5.42	5.56	

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 16 of 23

LOCATION	FFTA-N	1W103D	FFTA-N	/W103I	FFTA-N	IW103S	FFTA-M	W105D
SAMPLE ID	FFTA-MW103D-20130320	FFTA-MW103D-20130904	FFTA-MW103I-20130320	FFTA-MW103I-20130904	FFTA-MW103S-20130320	FFTA-MW103S-20130904	FFTA-MW105D-20130319	FFTA-MW105D-20130904
SAMPLE DATE SAMPLE CODE	20130320 NORMAL	20130904 NORMAL	20130320 NORMAL	20130904 NORMAL	20130320 NORMAL	20130904 NORMAL	20130319 NORMAL	20130904 NORMAL
VOLATILES (µg/L)	NORMAL	NORMAL	NORMAL	NORMAL	NORWAL	NORMAL	NORMAL	NORMAL
BENZENE	0.11 U	0.25 U						
CIS-1,2-DICHLOROETHENE	0.41 J	NA	1.2	NA	0.24 U	NA	0.24 U	NA
SEMIVOLATILES (µg/L)	0112.5	101			01210		012110	
3&4-METHYLPHENOL	0.085 U	1.9 U	0.085 U	1.9 U	0.085 U	1.9 U	0.086 U	1.9 U
4-METHYLPHENOL	NA							
NAPHTHALENE	0.013 U	0.95 U	0.013 U	0.96 U	0.1 J	0.95 U	0.013 U	0.95 U
METALS (μg/L)		•		•	•			
ARSENIC	1.5	1.2 U	1.9	1.2 U	1.8	1.2 U	2.5	1.2 U
MANGANESE	2.9 B	3.7	21	43	0.5 B	1.1 J	1.6 B	1.3 J
DISSOLVED METALS (µg/L)				•	•	-	-	
ARSENIC	3.2	1.2 U	3	1.2 U	2.1	1.2 U	3.3	1.2 U
MANGANESE	3.1 B	4.1	0.68 B	0.31 J	0.59 B	0.89 J	1.4 B	2.8
FIELD (MG/L)								
ALKALINITY	10 <	10 <	22	0	15	0	10 <	10
DISSOLVED OXYGEN	1	1.5	3	4	4	4	3	2
DISSOLVED OXYGEN - HORIBA	1.43	3.03	4.59	2.67	7.27	2.98	3.95	2.72
FERROUS IRON	0.2	0	0.2	0	0.2	0	0.2	0
HYDROGEN SULFIDE	0	0	0	0	0	0	0	0
NITRATE	0	0	0	0	0	0	0	0
NITRITE	0	0	0	0	0	0	0	0
SALINITY (%)	NA							
TEMPERATURE (deg C)	14.08	16.52	13.92	18.61	10.66	18.05	15.67	16.72
SPECIFIC CONDUCTANCE (ms/cm)	0.103	0.071	0.141	0.098	0.084	0.225	0.081	0.07
OXIDATION REDUCTION POTENTIAL (mv)	260	243	230	196	262	191	285	338
TURBIDITY (ntu)	0.25	0	0.7	0.3	2.79	2.31	0.03	0.39
PH (s.u.)	5.49	5.54	5.76	6.01	5.36	6.16	5.32	5.18

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 17 of 23

LOCATION		FFTA-MW105D							
SAMPLE ID	FFTA-MW105D-20140317	FFTA-MW105D-20140923	FFTA-MW105D-20150317	FFTA-MW105D-20151201	FFTA-MW105D-20160928	FFTA-MW105D-20170620	FFTA-MW105D-20180328	FFTA-MW105D-20181213	
SAMPLE DATE SAMPLE CODE	20140317 NORMAL	20140923 NORMAL	20150317 NORMAL	20151201 NORMAL	20160928 NORMAL	20170620 NORMAL	20180328 NORMAL	20181213 NORMAL	
VOLATILES (µg/L)									
BENZENE	0.25 U	0.11 U	0.11 U	0.26 U	0.26 U	0.26 U	0.26 U	NA	
CIS-1,2-DICHLOROETHENE	NA	NA	0.24 U	NA	NA	NA	NA	NA	
SEMIVOLATILES (µg/L)				•	• •	-	-		
3&4-METHYLPHENOL	9.6 U	NA	NA	5.8 U	0.43 UJ	0.42 U	0.42 U	0.42 U	
4-METHYLPHENOL	NA	0.2 U	0.22 U	NA	NA	NA	NA	NA	
NAPHTHALENE	4.8 U	0.022 U	0.03 J	2.3 U	0.063 UJ	0.060 U	0.060 U	0.060 U	
METALS (μg/L)									
ARSENIC	1.2 U	0.29 U	0.29 U	2.3 U	2.3 U	4 U	2.3 U	2.3 U	
MANGANESE	1.6 J	1.4 J	1.2 U	2.2	1.6 U	1.6 J	9.34	6.23	
DISSOLVED METALS (µg/L)									
ARSENIC	1.2 U	0.94 J	0.29 U	2.3 U	2.3 U	2.4 J	2.3 U	2.3 U	
MANGANESE	7.5	1.2 J	1.2 U	1.7 U	2.4	1.8 U	7.76	1.7 J	
FIELD (MG/L)									
ALKALINITY	10	NA							
DISSOLVED OXYGEN	1	NA	NA	NA	NA	NA	3	3	
DISSOLVED OXYGEN - HORIBA	2.47	NA	NA	NA	NA	NA	3.72	2.25	
FERROUS IRON	0	NA							
HYDROGEN SULFIDE	0	NA							
NITRATE	0	NA							
NITRITE	0	NA							
SALINITY (%)	0	NA							
TEMPERATURE (deg C)	10.07	NA	NA	NA	NA	NA	13.69	15.27	
SPECIFIC CONDUCTANCE (ms/cm)	0.081	NA	NA	NA	NA	NA	0.104	0.107	
OXIDATION REDUCTION POTENTIAL (mv)	305	NA	NA	NA	NA	NA	267	302	
TURBIDITY (ntu)	3.08	NA	NA	NA	NA	NA	0	0	
PH (s.u.)	5.05	NA	NA	NA	NA	NA	5.62	5.44	

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 18 of 23

LOCATION	FFTA-N	W105D			FFTA-N	MW106		
SAMPLE ID	FFTA-MW105D-20200722	FFTA-MW105D-20210630	FFTA-MW106-20130320	FFTA-MW106-20130904	FFTA-MW106-20140317	FFTA-MW106-20140923	FFTA-MW106-20150317	FFTA-MW106-20151201
SAMPLE DATE SAMPLE CODE	20200722 NORMAL	20210630	20130320	20130904	20140317 NORMAL	20140923	20150317	20151201 NORMAL
VOLATILES (µg/L)	NORIVIAL	NORMAL	NORMAL	NORMAL	NORIVIAL	NORMAL	NORMAL	NORIVIAL
BENZENE	NA	NA	0.11 U	0.25 U	0.25 U	0.11 U	0.11 U	0.26 U
CIS-1,2-DICHLOROETHENE	NA	NA	0.24 U	NA	NA	NA	0.24 U	NA
SEMIVOLATILES (µg/L)			0.2 . 0	1			0.2.1 0	
3&4-METHYLPHENOL	9.5 U	NA	0.086 U	1.9 U	10 U	NA	NA	6.2 U
4-METHYLPHENOL	NA	NA	NA	NA	NA	0.22 U	0.22 U	NA
NAPHTHALENE	9.5 U	0.48 U	0.013 U	0.95 U	5.1 U	0.024 U	0.024 U	2.4 U
METALS (μg/L)				•	-	• •		
ARSENIC	3.0 U	1.3 U	1.3	1.2 U	1.2 U	1.6 U	0.29 U	2.3 U
MANGANESE	5.0 U	1.5 J	0.44 B	1 J	0.87 J	0.7 J	1.2 U	0.92 J
DISSOLVED METALS (µg/L)								
ARSENIC	3.0 U	1.3 U	2.4	1.2 U	1.2 U	1.5 U	0.29 U	2.3 U
MANGANESE	5.0 U	1.2 J	0.69 B	0.74 J	0.65 J	0.78 J	0.88 U	1 U
FIELD (MG/L)								
ALKALINITY	NA	NA	5	12	24	NA	NA	NA
DISSOLVED OXYGEN	4	3	8	7	8	NA	NA	NA
DISSOLVED OXYGEN - HORIBA	5.21	3.18	6.2	9.14	10.25	NA	NA	NA
FERROUS IRON	NA	NA	0.6	0	0	NA	NA	NA
HYDROGEN SULFIDE	NA	NA	0	0.1	0	NA	NA	NA
NITRATE	NA	NA	0	0	0	NA	NA	NA
NITRITE	NA	NA	0	0	0	NA	NA	NA
SALINITY (%)	NA	NA	NA	NA	0	NA	NA	NA
TEMPERATURE (deg C)	23.76	17.43	14.57	19.09	8.67	NA	NA	NA
SPECIFIC CONDUCTANCE (ms/cm)	0.084	0.82	0.143	0.077	0.086	NA	NA	NA
OXIDATION REDUCTION POTENTIAL (mv)	288	272	204	195	314	NA	NA	NA
TURBIDITY (ntu)	3.2	2.5	0.32	0.18	1.69	NA	NA	NA
PH (s.u.)	5.43	5.4	6.22	6.19	5.81	NA	NA	NA

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 19 of 23

LOCATION			FFTA-N	/W107				
SAMPLE ID	FFTA-MW106-20160927	FFTA-MW106-20170621	FFTA-MW106-20180327	FFTA-MW106-20181212	FFTA-MW106-20200721	FFTA-MW106-20210629	FFTA-MW107-20130320	FFTA-MW107-20130905
SAMPLE DATE SAMPLE CODE	20160927 NORMAL	20170621 NORMAL	20180327 NORMAL	20181212 NORMAL	20200721 NORMAL	20210629 NORMAL	20130320 NORMAL	20130905 NORMAL
VOLATILES (µg/L)								
BENZENE	0.26 U	0.26 U	0.26 U	NA	NA	NA	6.6	4.7 J
CIS-1,2-DICHLOROETHENE	NA	NA	NA	NA	NA	NA	1.6	NA
SEMIVOLATILES (µg/L)								
3&4-METHYLPHENOL	0.44 U	0.42 U	0.42 U	0.42 U	9.5 U	NA	7.1	7.9 J
4-METHYLPHENOL	NA							
NAPHTHALENE	0.063 U	0.060 U	0.060 U	0.060 U	9.5 U	0.48 U	72	40
METALS (μg/L)		•	•	•	•	•	•	
ARSENIC	2.3 U	4 U	2.3 U	2.3 U	3.0 U	1.3 U	27	35
MANGANESE	1.3 U	1 J	1.3 U	3.2 J	5.0 U	2.0 J	520	500
DISSOLVED METALS (µg/L)		•	•	• •	•	•	-	
ARSENIC	2.3 U	4 U	2.3 U	2.3 U	3.0 U	1.3 U	26	35
MANGANESE	1.4 U	0.91 J	0.81 U	3.4 J	5.0 U	1.0 U	510	480
FIELD (MG/L)								
ALKALINITY	NA	NA	NA	NA	NA	NA	100	35
DISSOLVED OXYGEN	NA	NA	8	6	6	8	0	0
DISSOLVED OXYGEN - HORIBA	NA	NA	7.75	6.06	9.48	4.51	0	0
FERROUS IRON	NA	NA	NA	NA	NA	NA	7	2
HYDROGEN SULFIDE	NA	NA	NA	NA	NA	NA	0	0
NITRATE	NA	NA	NA	NA	NA	NA	0	0
NITRITE	NA	NA	NA	NA	NA	NA	0	0
SALINITY (%)	NA							
TEMPERATURE (deg C)	NA	NA	13.77	17.35	23.76	19.15	14.77	21.67
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	0.099	0.118	0.108	0.074	0.185	0.299
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	133	231	288	171	-121	-75
TURBIDITY (ntu)	NA	NA	0	0	0	0	3.85	0.52
PH (s.u.)	NA	NA	6.32	6.15	5.83	6.27	6.48	6.35

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 20 of 23

LOCATION				FFTA-N	MW107			
SAMPLE ID	FFTA-MW107-20140317	FFTA-MW107-20140923	FFTA-MW107-20150317	FFTA-MW107-20151201	FFTA-MW107-20160927	FFTA-MW107-20170621	FFTA-MW107-20180326	FFTA-MW107-20181212
SAMPLE DATE	20140317	20140923	20150317	20151201	20160927	20170621	20180326	20181212
SAMPLE CODE	NORMAL							
VOLATILES (µg/L)				-	I		-	
BENZENE	3.5 J	5.2	3.3	2.7	2.3	1.5	1.2	NA
CIS-1,2-DICHLOROETHENE	NA	NA	0.24 U	NA	NA	NA	NA	NA
SEMIVOLATILES (µg/L)					r			
3&4-METHYLPHENOL	11 U	NA	NA	9.2 J	4.6	4.6 J-	4.1	2.7 J
4-METHYLPHENOL	NA	20	6	NA	NA	NA	NA	NA
NAPHTHALENE	83	41	39	80	66	41 J-	39 J	38 J
METALS (μg/L)								
ARSENIC	27	30	28	36.6	35.8	35.8	35.1	39.2
MANGANESE	620	510	490	407	515	405	437	630
DISSOLVED METALS (µg/L)								
ARSENIC	25	26	26	38.3	41.6	36.4	34.7	40.1
MANGANESE	580	520	500	411	354	390	452	671
FIELD (MG/L)								
ALKALINITY	45	NA						
DISSOLVED OXYGEN	0	NA	NA	NA	NA	NA	0	0
DISSOLVED OXYGEN - HORIBA	0	NA	NA	NA	NA	NA	4.58	0
FERROUS IRON	2.2	NA						
HYDROGEN SULFIDE	0	NA						
NITRATE	0	NA						
NITRITE	0	NA						
SALINITY (%)	0.1	NA						
TEMPERATURE (deg C)	11.4	NA	NA	NA	NA	NA	13.47	17.13
SPECIFIC CONDUCTANCE (ms/cm)	0.278	NA	NA	NA	NA	NA	0.180	0.197
OXIDATION REDUCTION POTENTIAL (mv)	-116	NA	NA	NA	NA	NA	-105	-85
TURBIDITY (ntu)	0.37	NA	NA	NA	NA	NA	2.3	0
PH (s.u.)	6.45	NA	NA	NA	NA	NA	6.65	6.39

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 21 of 23

LOCATION			FFTA-MW107		FFTA-MW108			
SAMPLE ID	FFTA-MW107-20200722	FFTA-MW107-20210629	FFTA-DUP01-20210629	FFTA-MW107-20220927	FFTA-DUP01-20220927	FFTA-MW108-20130320	FFTA-MW108-20130905	FFTA-MW108-20140318
SAMPLE DATE	20200722	20210629	20210629	20220927	20220927	20130320	20130905	20140318
SAMPLE CODE	NORMAL	ORIGINAL	DUPLICATE	ORIGINAL	DUPLICATE	NORMAL	NORMAL	NORMAL
VOLATILES (µg/L)		1		Γ		Γ		1
BENZENE	NA	NA	NA	NA	NA	0.11 U	0.25 U	0.25 U
CIS-1,2-DICHLOROETHENE	NA	NA	NA	NA	NA	0.24 U	NA	NA
SEMIVOLATILES (µg/L)					-			
3&4-METHYLPHENOL	9.5 U	NA	NA	NA	NA	0.09 U	1.9 U	10 U
4-METHYLPHENOL	NA							
NAPHTHALENE	33	0.48 U	0.48 U	38.3	33	0.014 U	0.97 U	5.1 U
METALS (μg/L)								
ARSENIC	43	39.6	40.3	40.4	40.6	3.3	1.2 U	1.2 U
MANGANESE	250	329	327	239	243	0.56 B	0.39 J	0.25 J
DISSOLVED METALS (µg/L)								
ARSENIC	50	40.4	42.3	42.3	42.7	3.2	1.2 U	1.2 U
MANGANESE	270	332	246	246	232	0.77 B	0.39 J	0.35 J
FIELD (MG/L)								
ALKALINITY	NA	NA	NA	NA	NA	11	12	10 <
DISSOLVED OXYGEN	0	0.1	0.1	NA	NA	2	6	4
DISSOLVED OXYGEN - HORIBA	0	0	0	0	0	6.9	4.55	4.5
FERROUS IRON	NA	NA	NA	NA	NA	0.2	0	0
HYDROGEN SULFIDE	NA	NA	NA	NA	NA	0	0	0
NITRATE	NA	NA	NA	NA	NA	0	0	0
NITRITE	NA	NA	NA	NA	NA	0	0	0
SALINITY (%)	NA	0						
TEMPERATURE (deg C)	18.68	18.8	18.8	20.75	20.75	13.61	17.02	13.33
SPECIFIC CONDUCTANCE (ms/cm)	0.146	0.128	0.128	0.117	0.117	0.089	0.065	0.066
OXIDATION REDUCTION POTENTIAL (mv)	-74	-67	-67	-110	-110	212	219	293
TURBIDITY (ntu)	4.4	6.49	6.49	3.22	3.22	0.62	0.35	0
PH (s.u.)	6.37	6.41	6.41	5.8	5.8	5.55	5.83	5.03

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 22 of 23

LOCATION		FFTA-MW108							
SAMPLE ID	FFTA-MW108-20140924	FFTA-MW108-20150318	FFTA-MW108-20151202	FFTA-MW108-20160927	FFTA-MW108-20161130	FFTA-MW108-20170622	FFTA-MW108-20200722	FFTA-DUP01-20200722	
SAMPLE DATE SAMPLE CODE	20140924 NORMAL	20150318 NORMAL	20151202 NORMAL	20160927 NORMAL	20161130 NORMAL	20170622 NORMAL	20200722 ORIGINAL	20200722 DUPLICATE	
VOLATILES (µg/L)									
BENZENE	0.11 U	0.11 U	0.26 U	0.26 U	NA	0.26 U	NA	NA	
CIS-1,2-DICHLOROETHENE	NA	0.24 U	NA	NA	NA	NA	NA	NA	
SEMIVOLATILES (µg/L)									
3&4-METHYLPHENOL	NA	NA	5.3 U	0.42 U	NA	0.42 U	9.5 U	9.5 U	
4-METHYLPHENOL	0.23 U	0.21 U	NA	NA	NA	NA	NA	NA	
NAPHTHALENE	0.025 U	0.023 U	2.1 U	0.061 U	NA	0.06 U	9.5 U	9.5 U	
METALS (µg/L)					•	•			
ARSENIC	0.29 U	0.29 U	2.3 U	2.3 U	NA	4 U	3.0 U	3.0 U	
MANGANESE	0.4 U	0.48 U	1.9 U	1.2 U	NA	2.6	5.0 U	5.0 U	
DISSOLVED METALS (µg/L)					-	•			
ARSENIC	0.29 U	0.29 U	2.3 U	2.3 U	NA	4 U	3.0 U	3.0 U	
MANGANESE	0.32 U	0.63 U	1.2 J	1.5 U	NA	0.89 J	5.0 U	5.0 U	
FIELD (MG/L)									
ALKALINITY	NA	NA							
DISSOLVED OXYGEN	NA	NA	NA	NA	NA	NA	6	6	
DISSOLVED OXYGEN - HORIBA	NA	NA	NA	NA	NA	NA	8.58	8.58	
FERROUS IRON	NA	NA							
HYDROGEN SULFIDE	NA	NA							
NITRATE	NA	NA							
NITRITE	NA	NA							
SALINITY (%)	NA	NA							
TEMPERATURE (deg C)	NA	NA	NA	NA	NA	NA	18.16	18.16	
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	NA	NA	NA	NA	0.084	0.084	
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	NA	NA	NA	NA	256	256	
TURBIDITY (ntu)	NA	NA	NA	NA	NA	NA	0	0	
PH (s.u.)	NA	NA	NA	NA	NA	NA	5.61	5.61	

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

Table A-1 LTM Data Summary Table Former Fire Training Area NASA Wallops Flight Facility, Wallops Island, Virginia Page 23 of 23

LOCATION	FFTA-MW108
SAMPLE ID	FFTA-MW108-20210630
SAMPLE DATE	20210630
SAMPLE CODE	NORMAL
VOLATILES (µg/L)	
BENZENE	NA
CIS-1,2-DICHLOROETHENE	NA
SEMIVOLATILES (µg/L)	
3&4-METHYLPHENOL	NA
4-METHYLPHENOL	NA
NAPHTHALENE	0.48 U
METALS (µg/L)	
ARSENIC	1.3 U
MANGANESE	1.0 U
DISSOLVED METALS (µg/L)	
ARSENIC	1.3 U
MANGANESE	1.0 U
FIELD (MG/L)	
ALKALINITY	NA
DISSOLVED OXYGEN	9
DISSOLVED OXYGEN - HORIBA	6.56
FERROUS IRON	NA
HYDROGEN SULFIDE	NA
NITRATE	NA
NITRITE	NA
SALINITY (%)	NA
TEMPERATURE (deg C)	19.12
SPECIFIC CONDUCTANCE (ms/cm)	0.056
OXIDATION REDUCTION POTENTIAL	247
	4.74
TURBIDITY (ntu)	4.71
PH (s.u.)	5.95

μg/L- micrograms per liter mg/L- micrograms per liter

Notes:

1. Cleanup levels were defined for the COCs at the Former Fire Training Area in the ROD.

TABLE A-2 PFAS SUMMARY DATA TABLE FFTA (PFAS AREA 9) NASA WALLOPS FLIGHT FACILITY, WALLOPS ISLAND, VIRGINIA PAGE 1 OF 4

Sample Location	Sample ID	Sample Dept (Feet bgs)	h Sample Date	PFOA	PFOS	PFBS	PFDA	PFDoA or PFDoDA	PFHpA	PFHxS	PFHxA	PFNA	PFTA or PFTetA	PFTrDA	PFUnA or PFUDA	NEtFOSAA	NMeFOSAA	HFPO-DA	ADONA	9CI-PF3ONS	11CI- PF3OUdS
	Soil Hum	an Health Scree	ning Levels (µg/kg)	19 ⁽¹⁾	13 ⁽¹⁾	1,900 ⁽¹⁾	NSL	NSL	NSL	130 ⁽¹⁾	3,200 ⁽¹⁾	19 ⁽¹⁾	NSL	NSL	NSL	NSL	NSL	23 ⁽¹⁾	NSL	NSL	NSL
			Soil ESVs (µg/kg)	3,840 ⁽²⁾	8.7 ⁽²⁾	817 ⁽²⁾	67.7 ⁽²⁾	NESV	1,000 ⁽²⁾	2.8 ⁽²⁾	6,200 ⁽²⁾	24.2 ⁽²⁾	NESV	NESV	NESV	NESV	NESV	NESV	NESV	NESV	NESV
	HCS-SB01-0002	0 - 2	5/0/2040	0.26	0.73	0.027 U	0.21	0.072 U	0.24	0.051 J	0.17 J	0.39	0.058 U	0.054 U	0.18 J	0.4 U	0.42 U				
HCS-SB01	HCS-SB01-0002-D	0-2	5/8/2019	0.25	0.98	0.027 U	0.23	0.072 U	0.22	0.05 J	0.19 J	0.43	0.058 U	0.055 U	0.19 J	0.4 U	0.42 U				
	HCS-SB01-0406	4 - 6	5/8/2019	0.088 U	0.2 U	0.025 U	0.022 U	0.068 U	0.035 J	0.032 U	0.043 U	0.05 J	0.055 U	0.052 U	0.037 U	0.38 U	0.4 U				
	HCS-SB02-0002	0 - 2	5/8/2019	0.11 J	0.21 J	0.026 U	0.023 U	0.071 U	0.05 J	0.033 U	0.044 U	0.16 J	0.057 U	0.054 U	0.041 J	0.39 U	0.41 U				
HCS-SB02	HCS-SB02-0406	1.6	5/9/2010	0.091 U	0.21 U	0.026 U	0.023 U	0.071 U	0.031 U	0.033 U	0.044 U	0.073 J	0.057 U	0.054 U	0.038 U	0.39 U	0.41 U				
	HCS-SB02-0406-D	4 - 6	5/8/2019	0.092 U	0.21 U	0.027 U	0.023 U	0.071 U	0.031 U	0.033 U	0.045 U	0.038 U	0.058 U	0.054 U	0.038 U	0.39 U	0.42 U				
HCS-SB03	HCS-SB03-0002	0 - 2	5/8/2019	0.3	0.55	0.027 U	0.044 J	0.071 U	0.14 J	0.033 J	0.085 J	0.46	0.057 U	0.054 U	0.038 U	0.39 U	0.41 U				
HC3-3B03	HCS-SB03-0406	4 - 6	5/8/2019	0.093 U	0.22 U	0.027 U	0.024 U	0.072 U	0.031 U	0.033 U	0.045 U	0.039 U	0.058 U	0.055 U	0.039 U	0.4 U	0.42 U				
	FFTA-SB01-0002	0 - 2	5/1/2019	1.6	<u>330</u>	0.078 J	2.3	0.55	0.45	2.8	0.69	6.8	0.27	1.4	4	0.4 U	0.42 U				
FFTA-SB01	FFTA-SB01-0406	4 - 6	5/1/2019	5.7	<u>970</u>	0.13 U	0.68 J	0.35 U	1.2	<u>8.1</u>	0.58 J	7	0.29 U	0.27 U	0.31 J	2 U	2.1 U				
FFTA-SBUT	FFTA-SB01-0406-D	4 - 0	5/1/2019	6.6	<u>1,100</u>	0.13 UJ	0.77 J	0.36 U	0.9 J	<u>8.5</u>	0.62 J	9	0.29 U	0.27 U	0.33 J	2 U	2.1 U				
	FFTA-SB01-1314	13 - 14	5/1/2019	2.5	<u>750</u>	0.13 U	0.35 J	0.36 U	0.79 J	<u>11</u>	0.55 J	1.5	0.29 U	0.28 U	0.19 U	2 U	2.1 U				
	FFTA-SB02-0002	0 - 2	5/1/2019	0.58	<u>21</u>	0.026 U	3.3	0.069 U	1.3	0.66	0.18 J	1.6	0.056 U	0.054 J	0.52	0.38 U	0.4 U				
FFTA-SB02	FFTA-SB02-0406	4 - 6	5/1/2019	0.43	8.6	0.027 U	0.62	0.072 U	0.41	0.23	0.16 J	1.3	0.058 U	0.055 U	0.11 J	0.4 U	0.42 U				
	FFTA-SB02-1213	12 - 13	5/1/2019	0.24	<u>51</u>	0.026 U	0.023 U	0.07 U	0.14 J	0.17 J	0.067 J	2.3	0.057 U	0.053 U	0.038 U	0.39 U	0.41 U				
	FFTA-SB03-0002	0 - 2	5/1/2019	0.6	<u>11</u>	0.027 U	3.8	0.089 J	0.31	0.54	0.38	3.1	0.057 U	0.28	6.1	0.39 U	0.41 U				
FFTA-SB03	FFTA-SB03-0406	4 - 6	5/1/2019	6.1	<u>36</u>	0.025 U	0.98	0.068 U	2.6	1.1	2.6	3.6	0.055 U	0.052 U	0.3	0.38 U	0.4 U				
11174-0000	FFTA-SB03-1213	12 - 13	5/1/2019	0.53	0.62	0.025 U	0.11 J	0.068 U	0.21	0.12 J	0.41	0.24	0.055 U	0.052 U	0.037 U	0.38 U	0.4 U				
	FFTA-SB03-1213-D	12 - 13	5/1/2019	0.65	0.9	0.027 U	0.15 J	0.073 U	0.26	0.16 J	0.46	0.29	0.058 U	0.055 U	0.039 U	0.4 U	0.42 U				
	FFTA-SB04-0002	0 - 2	5/1/2019	0.26	4	0.026 U	0.2 J	0.07 U	0.21	0.47	0.21	0.17 J	0.056 U	0.1 J	0.78	0.39 U	0.41 U				
FFTA-SB04	FFTA-SB04-0406	4 - 6	5/1/2019	0.24	3.9	0.027 U	0.14 J	0.072 U	0.12 J	0.66	0.35	0.15 J	0.058 U	0.055 U	0.052 J	0.4 U	0.42 U				
	FFTA-SB04-1213	12 - 13	5/1/2019	0.33	<u>16</u> <u>J</u>	0.039 J	0.023 U	0.07 U	2	0.9	11 J-	0.064 J	0.056 U	0.053 U	0.037 U	0.38 U	0.41 U				
	FFTA-SB05-0002	0 - 2	5/1/2019	2.1	<u>10</u>	0.027 U	6.4	0.13 J	0.88	0.72	0.7	4.6	0.058 U	0.063 J	2.8	0.4 U	0.42 U				
FFTA-SB05	FFTA-SB05-0406	4 - 6	5/1/2019	14	<u>12</u>	0.068 J	1.4	0.073 U	9.2	<u>4.4</u>	5.1	6.7	0.059 U	0.056 U	0.17 J	0.4 U	0.42 U				
	FFTA-SB05-1213	12 - 13	5/1/2019	1.1	0.76	0.026 U	0.12 J	0.069 U	0.56	0.26	0.8	0.16 J	0.056 U	0.053 U	0.037 U	0.38 U	0.4 U				
	FFTA-SB06-0002	0 - 2	5/1/2019	1.4	<u>41</u>	0.057 J	9.1	4.2	0.69	<u>3.7</u>	1.9	1.9	1.6	3	49	0.39 U	0.42 U				
FFTA-SB06	FFTA-SB06-0406	4 - 6	5/1/2019	3	<u>260</u>	0.027 U	3.1	0.073 U	0.24	2.8	0.76	2.7	0.059 U	0.055 U	0.87	0.4 U	0.42 U				
	FFTA-SB06-1213	12 - 13	5/1/2019	1.8	<u>110</u>	0.026 U	0.11 J	0.069 U	0.53	<u>2.9</u>	0.21	0.85	0.056 U	0.053 U	0.037 U	0.38 U	0.4 U				
	FFTA-SB07-0002	0 - 2	5/1/2019	0.12 J	<u>9.8</u>	0.025 U	0.26	0.068 U	0.078 J	0.047 J	0.066 J	0.65	0.055 U	0.052 U	0.1 J	0.38 U	0.4 U				
FFTA-SB07	FFTA-SB07-0406	4 - 6	5/1/2019	0.099 J	2.4 J	0.026 U	0.05 J	0.07 U	0.069 J	0.047 J	0.056 J	0.3	0.056 U	0.053 U	0.038 U	0.39 U	0.41 U				
	FFTA-SB07-1314	13 - 14	5/1/2019	0.092 U	0.87 J	0.027 U	0.024 U	0.072 U	0.031 U	0.033 U	0.045 U	0.18 J	0.058 U	0.055 U	0.039 U	0.4 U	0.42 U				
	FFTA-SB101-0002	0 - 2	8/28/2021	1.2	5.4	0.28 U	1.1	0.28 U	0.71 J	0.47 J	0.29 J	1.3	0.28 U	0.3 U	0.39 J	0.28 U	0.28 U	0.28 U	0.28 U	0.33 U	0.3 U
FFTA-SB101	FFTA-SB101-0406	4 - 6	8/28/2021	1.1 J	3.3	0.3 U	0.3 U	0.3 U	0.3 U	0.39 J	0.3 U	0.84 J	0.3 U	0.32 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.35 U	0.31 U
	FFTA-SB101-1416	14 - 16	8/28/2021	0.61 J	<u>9.5</u>	0.32 U	0.32 U	0.32 U	0.33 J	0.45 J	0.32 U	0.36 J	0.32 U	0.34 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.37 U	0.33 U
	FFTA-SB102-0002	0 - 2	8/28/2021	0.33 U	4.1	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.85 J	0.33 U	0.35 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.38 U	0.34 U
FFTA-SB102	FFTA-SB102-0406	4 - 6	8/28/2021	0.47 J	3.5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	1.4	0.33 U	0.35 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.38 U	0.34 U
	FFTA-SB102-0911	9 - 11	8/28/2021	0.33 U	4.3	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	2.4	0.33 U	0.35 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.38 U	0.34 U
	FFTA-SB103-0006	0 - 6	8/28/2021	0.33 U	0.73 J	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.35 U	0.33 U	0.33 UJ	0.33 UJ	0.33 U	0.33 U	0.38 U	0.34 U
FFTA-SB103	FFTA-SB103-0406	4 - 6	8/28/2021	0.32 U	1.9	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.36 J	0.32 U	0.34 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.38 U	0.34 U
	FFTA-SB103-1113	11 - 13	8/28/2021	0.33 U	1.4	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.35 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.38 U	0.34 U
	FFTA-SB104-0002	0 - 2	8/29/2021	0.34 U	1.1 J	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.36 U	1.9	0.34 U	0.34 U	0.34 U	0.34 U	0.39 U	0.35 U
FFTA-SB104	FFTA-SB104-0406	4 - 6	8/29/2021	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.32 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.35 U	0.32 U
	FFTA-SB104-1315	13 - 15	8/29/2021	0.33 U	0.36 J	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.35 U	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U	0.38 U	0.34 U
	FFTA-SB105-0103	1-3	8/29/2021	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.32 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.35 U	0.31 U
FFTA-SB105	FFTA-SB105-0406	4 - 6	8/29/2021	0.31 U	0.82 J	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.33 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.36 U	0.32 U
	FFTA-SB105-1315	13 - 15	8/29/2021	0.3 U	<u>50.1</u>	0.3 U	0.32 J	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.32 U	1.3	0.3 U	0.3 U	0.3 U	0.3 U	0.35 U	0.31 U
	FFTA-SB106-0103	1 - 3	8/29/2021	1 J	<u>286</u>	0.32 U	0.64 J	0.32 U	0.32 U	1.1 J	0.32 U	0.81 J	0.32 U	0.34 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.37 U	0.33 U
FFTA-SB106	FFTA-SB106-0406	4 - 6 13 - 15	8/29/2021	0.44 J	<u>144</u>	0.31 U	0.31 U	0.31 U	0.51 J 0.28 U	1.4	0.32 J	0.31 U	0.31 U	0.33 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.36 U	0.33 U
	FFTA-SB106-1315 FFTA-SB107-0103	13 - 15	8/29/2021 10/6/2021	0.32 J	<u>122</u> 0.28	0.28 U	0.28 U 0.28 U	0.28 U 0.28 U	0.28 U 0.28 U	0.7 J	0.28 U	0.58 J	0.28 U	0.3 U 0.3 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U 0.28 U	0.33 U 0.33 U	0.29 U
FFTA-SB107	FFTA-SB107-0103 FFTA-SB107-0406	4 - 6	10/6/2021	0.28 U	0.28 U	0.28 U	0.28 U 0.29 U		0.28 U 0.29 U	0.28 U	0.28 U	0.28 U	0.28 U	0.3 U 0.31 U	0.28 U	0.28 U	0.28 U	0.28 U			0.29 U 0.3 U
FFIA-OBIU/				0.29 U	0.29 U	0.29 U		0.29 U		0.29 U	0.29 U	0.29 U	0.29 U		0.29 U	0.29 U	0.29 U	0.29 U	0.29 U	0.34 U	
	FFTA-SB107-1315	13 - 15	10/6/2021	0.27 U	<u>15.2</u>	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.28 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.31 U	0.28 U
	FFTA-SB108-0002 FFTA-SB108-0406	0 - 2	10/6/2021 10/6/2021	1.2	6.4	0.26 U	2.1	0.26 U 0.29 U	0.91 J 0.38 J	0.26 U	0.43 J	1.7	0.26 U	0.27 U 0.31 U	0.66 J	0.26 U	0.26 U	0.26 U	0.26 U 0.29 U	0.3 U 0.34 U	0.27 U 0.3 U
FFTA-SB108	FFTA-SB108-0406 FFTA-SB108-0406-D	4 - 6	10/6/2021	0.85 J 0.36 J	5 0.76 J	0.29 U 0.26 U	0.31 J 0.26 U	0.29 U 0.26 U	0.38 J 0.36 J	0.29 U 0.26 U	0.29 U	1 J 0.26 U	0.29 U 0.26 U	0.31 U 0.27 U	0.29 U 0.26 U	0.29 U 0.26 U	1.5 U	0.29 U 0.26 U	0.29 U 0.26 U	0.34 U 0.3 U	0.3 U 0.27 U
	FFTA-SB108-0406-D	4 - 6		0.36 J 0.33 J	0.76 J 2.5	0.26 U	0.26 U	0.26 U	0.36 J 0.25 U	0.26 U	0.26 U 0.25 U	0.26 U 0.25 J	0.26 U	0.27 U 0.27 U	0.26 U 0.25 U	0.26 U 0.25 U	0.26 U 0.25 U	0.26 U	0.26 U 0.25 U	0.3 U 0.29 U	0.27 U 0.26 U
	FF1A-30100-1313	13 - 15	10/6/2021	0.33 J	2.0	U.20 U	0.25 U	U.20 U	U.25 U	0.25 U	U.25 U	0.25 J	0.25 U	0.27 0	0.25 U	0.25 U	0.25 U	0.25 0	0.25 U	0.29 U	U.20 U

TABLE A-2 PFAS SUMMARY DATA TABLE FFTA (PFAS AREA 9) NASA WALLOPS FLIGHT FACILITY, WALLOPS ISLAND, VIRGINIA PAGE 2 OF 4

Sample Location	Sample ID	Sample Depth (Feet bgs)	Sample Date	PFOA	PFOS	PFBS	PFDA	PFDoA or PFDoDA	PFHpA	PFHxS	PFHxA	PFNA	PFTA or PFTetA	PFTrDA	PFUnA or PFUDA	NEtFOSAA	NMeFOSAA	HFPO-DA	ADONA	9CI-PF3ONS	11CI- PF3OUdS
Grou	undwater Human Health Scree	ening Levels (ng/	L)	6 ⁽³⁾	4 ⁽³⁾	600 ⁽³⁾	NSL	NSL	NSL	39 ⁽³⁾	990 ⁽³⁾	5.9 ⁽³⁾	NSL	NSL	NSL	NSL	NSL	6 ⁽³⁾	NSL	NSL	NSL
HCS-TW01	HCS-TW01-1721	17 - 21	5/8/2019	28	250	1.2 J	5.8	0.51 U	42	8.8	36	28	0.4 U	1.2 U	1 U	1.8 U	2.9 U				
HCS-TW02	HCS-TW02-1620	16 - 20	5/8/2019	5.7	73	0.96 J	0.45 J	0.51 U	6.7	3.5	10 J	6.9	0.3 U	1.2 U	1 U	1.8 U	2.9 U				
ŀ	HCS-TW02-1620-D			6	73	0.87 J	0.29 U	0.52 U	6.5	3.8	9.5 J	7.3	0.35 U	1.2 U	1 U	1.8 U	2.9 U				
	HCS-TW03-1620	16 - 20	5/8/2019	63	1,200	2.4 J	2.8 J	6.3	110	21	74	130	3.9 J-	8.3	4.4 J	3.5 U	5.8 U				
	HCS-TW04-1620	16 - 20	5/8/2019	4.8	48	0.54 J	0.29 U	0.51 U	1.7 J	3.1	3.9 J	1.7 J	0.27 U	1.2 U	1 U	1.7 U	2.9 U				
	FFTA-TW01-1822	18 - 22	5/11/2019	7.2	24	0.71 J	0.48 J	0.5 U	7.6	7.4	12	2	0.27 U	1.2 U	10	1.7 U	2.8 U				
	FFTA-TW02-2428 FFTA-TW03-2024	24 - 28 20 - 24	5/10/2019 5/10/2019	<u>6.1</u> 10	15 30	7.9 0.39 J	0.3 U 0.29 U	0.53 U 0.51 U	5.8 7.1	10 2.4	7.1 7.2	1.3 J 6.9	0.28 U 0.27 U	1.2 U 1.2 U	1.1 U 1 U	1.8 U 1.8 U	3 U 2.9 U				
	FFTA-TW03-2024 FFTA-TW04-1115	11 - 15	5/3/2019	40	52	0.39 J 0.7 J	0.29 U 0.3 U	0.51 U	12	45	5	3.2	0.27 U 0.41 U	1.2 U	1.1 U	1.8 U	2.9 U 3 U				
	FFTA-TW05-1014	10 - 14	5/3/2019	44	130	1.6 J	0.29 U	0.51 U	11	34	8	6.6	0.27 U	1.2 U	1 U	1.8 U	2.9 U				
F	FFTA-TW06-2630	26 - 30	5/10/2019	13	160	0.34 J	0.29 U	0.51 U	6.3	7.8	6.8	8.8	0.27 U	1.2 U	1 U	1.8 U	2.9 U				
FFTA-TW06	FFTA-TW06-3337	33 - 37	5/10/2019	1,000	7,400	78	1.5 U	2.6 U	980	1,600	1,400	330	1.4 U	6.2 U	5.2 U	9 U	15 U				
	FFTA-TW07-2226	22 - 26	5/10/2019	1.1 J	6.3	1 J	0.29 U	0.51 U	0.62 J	12	1.8	0.25 U	0.27 U	1.2 U	1 U	1.8 U	2.9 U				
FFTA-TW07	FFTA-TW07-2933	29 - 33	5/9/2019	0.81 U	1.6 J	1.2 J	0.29 U	0.52 U	0.81 J	6.1	1.5 J	0.26 U	0.27 U	1.2 U	1 U	1.8 U	2.9 U				
FFTA-TW08 F	FFTA-TW08-1721	17 - 21	5/9/2019	0.9 J	0.6 J	0.19 U	0.29 U	1.2 J	0.56 J	0.37 U	0.54 U	0.25 U	1.7 J	2.8	1 U	1.8 U	2.9 U				
FFTA-TW101	FFTA-TW101-2024	20 - 24	8/27/2021	2 U	8.4	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 UJ	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
F	FFTA-TW101-5054	50 - 54	8/27/2021	12.2	21.7	5.1 J	2.8 U	2.8 U	8.6 J	33	16.8	2.8 U	2.8 U	2.8 U	2.8 U	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U	5.6 U
FFTA-TW102	FFTA-TW102-2529	25 - 29	9/12/2021	209	286	20.7	2.1 U	2.1 U	283	268	358	38.9	2.1 U	2.1 U	2.1 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U
ŀ	FFTA-TW102-4549	45 - 49	9/12/2021	13.5	48.4	7.5 J	2.3 U	2.3 U	10.5	49.2	21.7	2.3 U	2.3 U	2.3 U	2.3 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U	4.5 U
14-MW001	14-MW001-20210818	15 - 30	8/18/2021	7.1 J	353	2.1 J	2 U	2 U	5 J	42.1	5.5 J	14.3	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
	14-MW001-20210818-D 14-MW002-20211012	45 00	10/12/2021	7.2 J 22.9	322 43	2 U 6.4 J	2 U 2 U	2 U 2 U	4.8 J 39.1	40.9 72.2	5.1 J 61.4	13.4 2.8 J	2 U 2 U	2 U 2 U	2 U 2 U	4 U 4 U	4 U 4 U	4 U 4 U	4 U 4 U	4 U 4 U	4 U 4 U
14-MW002 1	14-MW002-20211012	15 - 30 1 - 6	4/10/2019	1,100	21,000	240	9.6	0.54 U	1.000	3.100	1.800	2.8 5	0.29 U	1.3 U	1.1 U	1.9 U	3.1 U	40	40	40	40
14-MW005	14-MW005-20190410	1-6	10/12/2021	664	11,200	74.1	33.6	40 U	581	1,160	781	281	40 U	40 U	2 U	4 U	4 U	 4 U	 4 U	4 U	80 U
F	FFTA-MW002S-20161130	10 - 30	11/30/2016	1,500	10,000	52			670	820		340									
FFTA-MW002	FFTA-MW002S-20210817	10 - 30	8/17/2021	1,270	17,300	39.2	70.6	2 U	798	2,880	1.150	268	2 U	2 U	11.4	4 U	4 U	4 U	4 U	4 U	4 U
F	FFTA-MW055S-20161130			2,700	20,000	25			3,100	1,700		1,200									
F	FFTA-MW055S-20161130-D	8 - 23	11/30/2016	2,800	20,000	26			3,200	1,800		1,300									
FFTA-MW055 F	FFTA-MW055S-20210816	8 - 23	8/16/2021	1,170	5,050	12.9	14.8	2 U	1,320	640	1,130	462	40 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
F	FFTA-MW055D-20161130	14 - 29	11/30/2016	3,100	18,000	8			2,600	800		3,200									
F	FFTA-MW055D-20210816	14 - 29	8/16/2021	416	2,110	4.2 J	2.1 J	2 U	559	187	380	235	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
FFTA-MW056	FFTA-MW056D-20161201	28 - 43	12/1/2016	870	24,000	110			830	1,800		930									
F	FFTA-MW056D-20210817	28 - 43	8/17/2021	1,680	46,200	65.1	18.1	2 U	1,320	4,030	1,590	1,150	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
FFTA-MW057	FFTA-MW057S-20161201	9 - 24	12/1/2016	12	35	12			9.2	97		0.61 U									
F	FFTA-MW057S-20210817	9 - 24 8 - 23	8/17/2021 12/1/2016	386 520	8,400 3,500	15.5 18	14.9	2 U	332 430	839	313	205 230	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U 	4 U
FFTA-MW058	FFTA-MW058S-20161201 FFTA-MW058S-20210817	8 - 23	8/17/2021	389	5,880	8.3	 7.2 J	 2 U	398	500 293	 378	301	 20 U	 2 U	 2 U	 4 U	 4 U	 4 U	 4 U	 4 U	 4 U
FFTA-MW059 F	FFTA-MW059S-20210817	11 - 26	8/17/2021	457	10.400	24.3	6.7 J	2 U	324	1.160	210	170	200 2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
	FFTA-MW060I-20210817	20 - 35	8/17/2021	473	12,000	20.5	30.2	2 U	606	846	612	201	2 U	2 U	6.6 J	4 U	4 U	4 U	4 U	4 U	4 U
F	FFTA-MW061I-20161201	18 - 33	12/1/2016	780	19,000	120			740	2.000		910									
FFTA-MW061	FFTA-MW061I-20210817	18 - 33	8/17/2021	867	25,800	46	19.3	2 U	691	2,230	989	734	2 U	2 U	5.9 J	4 U	4 U	4 U	4 U	4 U	4 U
FFTA-MW101	FFTA-MW101S-20161201	12 - 22	11/30/2016	3,600	20,000	54			3,900	2,200		940									
FFIA-IVIVIUI	FFTA-MW101S-20210816	12 - 22	8/16/2021	918	14,200	12.9	13.3	2 U	807	695	639	805	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
	FFTA-MW102D-20190409	37 - 47	4/9/2019	1.8 J	8.5 J	0.67 J	0.29 U	0.51 U	1.7 J	5.4	3.7	0.35 J	0.27 U	1.2 U	1 U	1.8 U	2.9 U				
-	FFTA-MW102D-20210817	37 - 47	8/17/2021	2 U	8	2 U	2 U	2 U	2 U	5 J	2.5 J	2 U	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
	FFTA-MW102D-20210817-D	-		2 U	8.8	2 U	2 U	2 U	2 U	5.5 J	2.8 J	2 U	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
-	FFTA-MW103S-20161201	10.5 - 15.5	12/1/2016	20	570	61			45	440		10									
-	FFTA-MW103S-20210823	10.5 - 15.5	8/23/2021	14.4	35.5	65.3	2 U	2 U	21.5	2,060	54.1	2 J	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
EFTA-M/V/103	FFTA-MW103I-20161201 FFTA-MW103I-20210823	20 - 25	12/1/2016	1,100	23,000 25,800	300 126	 34.3		1,000	2,700 2,340		440 349		 2 U		 4 U			 4 U		
-	FFTA-MW103I-20210823 FFTA-MW103D-20190410	20 - 25 38 - 48	8/23/2021 4/10/2019	1,130 8.2	25,800	126 1.3 J	0.28 U	2 U 0.5 U	950 6	2,340 18	1,230	2.1	2 U 0.31 U	2 U 1.2 U	2 U 1 U	4 U 1.7 U	4 U 2.8 U	4 U 	4 0	4 U 	4 U
	FFTA-MW103D-20190410 FFTA-MW103D-20210823	38 - 48 38 - 48	4/10/2019 8/23/2021	0.2 7.1 J	99 71	1.3 J 2 U	0.28 U	0.5 U 2 U	5.1 J	15.6	7.6 J	2.1 2 U	0.31 U 2 U	1.2 U 2 U	2 U	1.7 U 4 U	2.8 U 4 U	 4 U	 4 U	 4 U	 4 U
F	FFTA-MW105D-20161201	<u>38 - 48</u> 41 - 51	12/1/2016	17	170	4.8			13	63	7.0 5	6.4					40				
EFTA-MW/105	FFTA-MW105D-20101201	41 - 51	8/17/2021	5.4 J	36.1	4.0 2 U	 2 U	 2 U	4 J	11.7	8.8	2 U	 2 U	 2 U	 2 U	 4 U	 4 U	 4 U	4 U	4 U	4 U
	FFTA-MW106-20210816	13 - 23	8/16/2021	386	2,690	5.3 J	3 J	2 U	273	367	220	219	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
F	FFTA-MW107-20161201	13 - 23	12/1/2016	2,300	10,000	40			1,500	1,300		1,100									
FFTA-MW107	FFTA-MW107-20210816	13 - 23	8/16/2021	1,030	6,680	17.8	18.1	2 U	1,260	574	1,190	655	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
· · · · · · · · · · · · · · · · · · ·	FFTA-MW108-20161201	13 - 23	11/30/2016	140	490	2.7			110	110		67									
FFTA-MW108						2.4 J	2.1 U	2.1 U	91	81.7	69.7	48	2.1 U	2.1 U	2.1 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U

TABLE A-2 PFAS SUMMARY DATA TABLE FFTA (PFAS AREA 9) NASA WALLOPS FLIGHT FACILITY, WALLOPS ISLAND, VIRGINIA PAGE 3 OF 4

Sample Location	Sample ID	Sample Depth (Feet bgs)	Sample Date	PFOA	PFOS	PFBS	PFDA	PFDoA or PFDoDA	PFHpA	PFHxS	PFHxA	PFNA	PFTA or PFTetA	PFTrDA	PFUnA or PFUDA	NEtFOSAA	NMeFOSAA	HFPO-DA	ADONA	9CI-PF3ONS	11CI- PF3OUdS
	Groundwater Huma	an Health Screen	ing Levels (ng/L)	6 ⁽³⁾	4 ⁽³⁾	600 ⁽³⁾	NSL	NSL	NSL	39 ⁽³⁾	990 ⁽³⁾	5.9 ⁽³⁾	NSL	NSL	NSL	NSL	NSL	6 ⁽³⁾	NSL	NSL	NSL
	FFTA-MW109-20161201	15 - 30	11/30/2016	76	7,000	1.2 J			44	26		79									
FFTA-MW109	FFTA-MW109-20211012	15 - 30	10/12/2021	4.2 J	25.8	7.1 J	2 U	2 U	2.5 J	6.6 J	2.8 J	2 U	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
	FFTA-MW109-20211012-D	15-30	10/12/2021	4.1 J	24.9	6.1 J	2 U	2 U	2.6 J	5.6 J	2.8 J	2 U	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
FFTA-MW110	FFTA-MW110-20190716	15 - 25	7/16/2019	52	100	11	0.28 U	0.49 U	73	82	150	5.4	0.26 U	1.2 U	0.99 U	1.7 U	2.8 U				
FFTA-MW201	FFTA-MW201I-20211014	31 - 41	10/14/2021	31	73.7	5.9 J	2 U	2 U	39.8	48.3	63.1	3.4 J	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
11174-100201	FFTA-MW201D-20211014	53 - 63	10/14/2021	13	71.2	10	2 U	2 U	6.5 J	42.8	14.7	2 U	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
	FFTA-MW202I-20211014	35 - 45	10/14/2021	1,000	8,990	34.5	3.8 J	2 U	901	1,100	917	310	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
FFTA-MW202	FFTA-MW202I-20211014-D			992	10,300	34.4	3.8 J	2 U	874	1,200	912	304	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
	FFTA-MW202D-20211014	55 - 65	10/14/2021	6.7 J	40.6	2.1 U	2.1 U	2.1 U	5.2 J	9	7.6 J	2.1 U	2.1 U	2.1 U	2.1 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U
	FFTA-MW204S-20211011	9 - 14	10/11/2021	1,180	7,330	379	8.7	2 U	761	6,790	2,080	167	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
FFTA-MW204	FFTA-MW204I-20211011	25 - 35	10/11/2021	7.8 J	135	2.8 J	2 U	2 U	4.6 J	11.6	6.7 J	12.5	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
-	FFTA-MW204D-20211011	39 - 49	10/11/2021	5.6 J	9.3	2 U	2 U	2 U	2.6 J	4.3 J	3.8 J	2 U	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
FFTA-MW205	FFTA-MW205S-20211015	25 - 35	10/15/2021	2.2 J	21.3	2 U	2 U	2 U	2 U	5.5 J	2 U	2 U	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
FFTA-MW206	FFTA-MW206S-20211011	25 - 35	10/11/2021	4.4 J	14.9	2 U	2 U	2 U	2.9 J	2.3 J	2.7 J	2 U	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
FFTA-MW207	FFTA-MW207I-20211012	33 - 43	10/12/2021	404	3,180	21.5	2 U	2 U	360	666	472	236	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
FFTA-PZ01	FFTA-PZ01-20211012	15 - 25	10/12/2021	285	4,720	117	2.2 J	2 U	244	1,970	459	57.8	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
FFTA-PZ02	FFTA-PZ02-20211012	5 - 15	10/12/2021	445	3,710	27.6	3.4 J	2.1 U	411	792	522	364	2.1 U	2.1 U	2.1 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U
FFTA-PZ03	FFTA-PZ03-20211012	5 - 15	10/12/2021	386	2,920	10	2 U	2 U	394	472	345	155	2 U	2 U	2 U	4 U	4 U	4 U	4 U	4 U	4 U
	WFF-PMW01S-20190409	40 - 55	4/9/2019	18	47	3.9	0.3 U	0.53 U	20	26	37	1.6 J	0.28 U	1.2 U	1.1 U	1.8 U	3 U				
WFF-PMW01	WFF-PMW01S-20211014	-	10/14/2021	10.3 J	34.2 J	3.6 J	2 UJ	2 UJ	11.7 J	19.3 J	22.1 J	2 UJ	2 UJ	2 UJ 43	2 UJ	4 UJ	4 UJ	4 UJ	4 UJ	4 UJ	4 UJ
	WFF-PMW01D-20190409 WFF-PMW01D-20211014	83 - 98	4/9/2019 10/14/2021	0.81 U	0.51 U	0.19 U	0.32 J 2 UJ	27 2 UJ	0.24 U	0.31 U	0.59 U	0.26 U	21	43 2 UJ	3.3 2 UJ	1.8 U 4 UJ	3 U	 4 UJ			 4 UJ
	Surface Water Huma	an Haalth Saraan		2 UJ 88 ⁽⁴⁾	2 UJ 58 ⁽⁴⁾	2 UJ 8,700 ⁽⁴⁾	2 0J NSL	2 0J NSL	2 UJ NSL	2 UJ 530 ⁽⁴⁾	2 UJ 14,000 ⁽⁴⁾	2 UJ 79 ⁽⁴⁾	2 UJ NSL	2 0J NSL	2 UJ NSL	4 0J NSL	4 UJ NSL	88 ⁽⁴⁾	4 UJ NSL	4 UJ NSL	4 UJ NSL
	Surface Water Hum					,					,	-									
o. // //		Surface W	/ater ESVs (ng/L)	307,000 ⁽⁵⁾	117 ⁽⁵⁾	400,000 ⁽⁵⁾	660 ⁽⁵⁾	72,000 ⁽⁵⁾	870,000 ⁽⁵⁾	5,500 ⁽⁵⁾	28,800 ⁽⁵⁾	2,080 ⁽⁵⁾	NESV	NESV	49,000 ⁽⁵⁾	NESV	NESV	NESV	NESV	NESV	NESV
Outfall	1	1	· · · ·		1								1			1	· · · · ·			1	n
Outfall003	OUTFALL003-A-20190717	NA	7/17/2019	3.7	5.2 J	0.7 U	0.31 U	0.55 U	2.4	6	3.1	0.6 U	0.29 U	1.3 U	1.1 U	1.9 U	3.1 U				
	OUTFALL003-B-20190717	NA	7/17/2019	9.5	71	9.3	0.28 U	0.49 U	7.7	21	9.3	2.3	0.26 U	1.2 U	0.98 U	1.7 U	2.8 U				
Drainage Channe	el la																				
Outfall003	OUTFALL003-20190410	NA	4/10/2019	95	<u>4,300</u>	31	0.91 J	0.51 J	85	460	180	28	0.36 U	1.2 U	1 U	1.8 U	2.9 U				
FFTA-SW01	FFTA-SW01-20190501	0 - 1	5/1/2019	87	<u>3,500</u>	28	1.9 J	0.92 U	81	430	140	29	0.48 U	2.2 U	1.8 U	3.2 U	5.2 U				
FFTA-SW02	FFTA-SW02-20190501	0 - 1	5/1/2019	65	<u>1,200</u>	13	0.74 J	0.47 U	65	180	97	23	0.25 U	1.1 U	0.94 U	1.6 U	2.6 U				
	FFTA-SW02-20190501-D	• ·		77	<u>1.300</u>	16	0.88 J	0.51 U	83	240	120	28	0.27 U	1.2 U	1 U	1.8 U	2.9 U				
FFTA-SW03	FFTA-SW03-20190501	0 - 1	5/1/2019	71	<u>1.100</u>	15	0.83 J	0.5 U	70	210	110	25	0.26 U	1.2 U	0.99 U	1.7 U	2.8 U				
FFTA-SW04	FFTA-SW04-20190501	0 - 1	5/1/2019	19	<u>210</u>	7.2	0.25 U	0.45 U	19	55	24	6.3	0.24 U	1.1 U	0.9 U	1.6 U	2.5 U				
	FFTA-SW05-HIGH-20190515	0 - 1	5/15/2019	4.2 J	31	2.2 U	3.4 U	2.6 U	5.3 J	5.5 J	6.4 J	1.2 U	4.1 UJ	2.7 U	2.4 U	6.7 U	7.5 U		-		
				12	110 J	2.9 J	3.4 U	2.6 U	13	39	23	3.6 J	4.1 UJ	2.6 U	2.3 U	6.6 U	7.5 U		-		
FFTA-SW05	FFTA-SW05-LOW-20190515	0 - 1	5/15/2019							37	19	2.4 U	8 UJ	5.2 UJ	4.6 U	13 U	15 UJ				
FFTA-SW05	FFTA-SW05-LOW-20190515 FFTA-SW05-LOW-20190515-D	0 - 1	5/15/2019	9.8 J	67 J	20 J-	6.7 U	5.2 UJ	15 J	31	-										
Seep	FFTA-SW05-LOW-20190515-D	0 - 1	5/15/2019	9.8 J	67 J	20 J-															
Seep FFTA-SEEP01	FFTA-SW05-LOW-20190515-D FFTA-SEEP01-20210812	0 - 1 NA	5/15/2019 8/12/2021	9.8 J 156	67 J <u>529</u>	20 J- 25.5	2.5 U	2.5 U	155	227	196	81.6	2.5 U	2.5 U	2.5 U	5 U	5 U	5 U	5 U	5 U	5 U
Seep FFTA-SEEP01 FFTA-SEEP02	FFTA-SW05-LOW-20190515-D FFTA-SEEP01-20210812 FFTA-SEEP02-20211101	NA NA	8/12/2021 11/1/2021	9.8 J 156 13.3	67 J 529 29.5	20 J- 25.5 2.2 J	2.5 U 2.1 U	2.5 U 2.1 U	155 15.3	227 20	196 16.4	2.7 J	2.1 U	2.1 U	2.1 U	4.2 U	4.2 U	4.2 U	4.2 U	5 U 4.2 U	4.2 U
Seep FFTA-SEEP01 FFTA-SEEP02 OUTFALL003-	FFTA-SW05-LOW-20190515-D FFTA-SEEP01-20210812 FFTA-SEEP02-20211101 OUTFALL003-SEEP-20190717	NA	8/12/2021	9.8 J 156 13.3 590	67 J 529 29.5 23,000	20 J- 25.5 2.2 J 230	2.5 U 2.1 U 5.9 U	2.5 U 2.1 U 4.8 U	155 15.3 570	227 20 4,600	196 16.4 1,300	2.7 J 170	2.1 U 2.5 U	2.1 U 11 U	2.1 U 9.6 U	4.2 U 17 U	4.2 U 27 U	4.2 U 	4.2 U 	4.2 U 	4.2 U
Seep FFTA-SEEP01 FFTA-SEEP02	FFTA-SW05-LOW-20190515-D FFTA-SEEP01-20210812 FFTA-SEEP02-20211101	NA NA	8/12/2021 11/1/2021	9.8 J 156 13.3	67 J 529 29.5	20 J- 25.5 2.2 J	2.5 U 2.1 U	2.5 U 2.1 U	155 15.3	227 20	196 16.4	2.7 J	2.1 U	2.1 U	2.1 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U
Seep FFTA-SEEP01 FFTA-SEEP02 OUTFALL003-	FFTA-SW05-LOW-20190515-D FFTA-SEEP01-20210812 FFTA-SEEP02-20211101 OUTFALL003-SEEP-20190717 OUTFALL003-SEEP-20210811	NA NA NA	8/12/2021 11/1/2021 7/17/2019	9.8 J 156 13.3 590	67 J 529 29.5 23,000	20 J- 25.5 2.2 J 230	2.5 U 2.1 U 5.9 U	2.5 U 2.1 U 4.8 U	155 15.3 570	227 20 4,600	196 16.4 1,300	2.7 J 170	2.1 U 2.5 U	2.1 U 11 U	2.1 U 9.6 U	4.2 U 17 U	4.2 U 27 U	4.2 U 	4.2 U 	4.2 U 	4.2 U

TABLE A-2 PFAS SUMMARY DATA TABLE FFTA (PFAS AREA 9) NASA WALLOPS FLIGHT FACILITY, WALLOPS ISLAND, VIRGINIA PAGE 4 OF 4

Sample Location	Sample ID	Sample Depth (Feet bgs)	Sample Date	PFOA	PFOS	PFBS	PFDA	PFDoA or PFDoDA	PFHpA	PFHxS	PFHxA	PFNA	PFTA or PFTetA	PFTrDA	PFUnA or PFUDA	NEtFOSAA	NMeFOSAA	HFPO-DA	ADONA	9CI-PF3ONS	11CI- PF3OUdS
	Sedi	ment Health Screening	g Levels (µg/kg)	130 ⁽⁶⁾	85 ⁽⁶⁾	13,000 ⁽⁶⁾	NSL	NSL	NSL	850 ⁽⁶⁾	21,000 ⁽⁶⁾	130 ⁽⁶⁾	NSL	NSL	NSL	NSL	NSL	160 ⁽⁶⁾	NSL	NSL	NSL
		Sedime	ent ESVs (µg/kg)	6 ⁽⁷⁾	1.4 ⁽⁷⁾	730 ⁽⁷⁾	NESV	NESV	NESV	NESV	1,800 ⁽⁷⁾	10 ⁽⁷⁾	NESV	NESV	NESV	NESV	NESV	NESV	NESV	NESV	NESV
FFTA-SD01	FFTA-SD01-0006	0 - 0.5	5/1/2019	0.14 J	<u>4.2</u> <u>J</u>	0.032 U	0.028 U	0.085 U	0.095 J	0.29	0.16 J	0.062 J	0.068 U	0.065 U	0.046 U	0.47 U	0.49 U				
FFTA-SD02	FFTA-SD02-0006	0 - 0.5	5/1/2019	0.11 U	0.89 J	0.031 U	0.027 U	0.083 U	0.048 J	0.11 J	0.083 J	0.045 U	0.067 U	0.063 U	0.045 U	0.46 U	0.48 U				
FFTA-SD02	FFTA-SD02-0006-D	0 - 0.5	5/1/2019	0.1 U	<u>2.4</u> J	0.03 U	0.027 U	0.081 U	0.049 J	0.17 J	0.14 J	0.044 U	0.065 U	0.062 U	0.044 U	0.45 U	0.47 U				
FFTA-SD03	FFTA-SD03-0006	0 - 0.5	5/1/2019	0.32 UJ	<u>20</u> <u>J</u>	0.093 UJ	0.082 UJ	0.25 UJ	0.18 J	0.55 J	0.16 UJ	0.21 J	0.2 UJ	0.19 UJ	0.13 UJ	1.4 UJ	1.5 UJ				
FFTA-SD04	FFTA-SD04-0006	0 - 0.5	5/1/2019	0.12 U	1 J	0.034 U	0.03 U	0.091 U	0.04 U	0.092 J	0.057 U	0.049 U	0.074 U	0.07 U	0.049 U	0.5 U	0.53 U				
FFTA-SD05	FFTA-SD05-0006	0 - 0.5	5/15/2019	0.28 U	<u>4</u>	0.08 U	0.071 U	0.21 U	0.093 U	0.19 J	0.13 U	0.12 U	0.17 U	0.16 U	0.12 U	1.2 U	1.3 U				
111A-3003	FFTA-SD05-0006-D	0 - 0.5	5/15/2019	0.21 U	<u>2.3</u>	0.062 U	0.055 U	0.17 U	0.072 U	0.13 J	0.1 U	0.09 U	0.13 U	0.13 U	0.09 U	0.92 U	0.97 U				
LMC-SD07	LMC-SD07-0006	0 - 0.5	7/18/2019	0.3 UJ	<u>2.9</u> <u>J</u>	0.088 UJ	0.078 UJ	0.24 UJ	0.1 UJ	0.11 U	0.15 UJ	0.14 J	0.19 UJ	0.18 UJ	0.13 J	1.3 UJ	1.4 UJ				

Notes:

"-D" indicates duplicate sample ESV - ecological screening value J - estimated value

J- - estimated value biased low

ng/L - nanograms per liter

NESV - no ecological screening value NSL - no screening levels U - non-detect value µg/kg - micrograms per kilogram

PFOA - Perfluorooctanoic acid PFOS - Perfluorooctanesulfonic acid PEBS - Perfluorobutanesulfonic acid PFDA - Perfluorodecanoic acid PFDoA or PFDoDA - Perfluorododecanoic acid PFHpA - Perfluoroheptanoic acid

PFHxS - Perfluorohexanesulfonic acid PFHxA - Perfluorohexanoic acid PFNA - Perfluorononanoic acid PFTA or PFTetA - Perfluorotetradecanoic acid PFTrDA - Perfluorotridecanoic acid PFUnA or PFUDA - Perfluoroundecanoic acid

Bolded and shaded values indicate an exceedance of the human health screening levels Italicized, underlined, and lightly shaded values indicate exceedance of ESVs

1 - USEPA Regional Screening Level (RSL) (May 2023) for Residential Soil and a hazard quotient (HQ) of 0.1 due to noncancer additive effects.

2 - Soil ESVs were derived from the lowest risked-based screening levels for plants, soil invertebrates, birds, or mammals from Grippo, et al. [2020], if available. Otherwise, the lower of the screening levels from the two Strategic Environmental Research and Development Program (SERDP) documents (Condor, et al. [2020]) was selected. 3 - USEPA RSL (May 2023) for Tapwater and an HQ of 0.1 due to noncancer additive effects.

4 - Calculated using the USEPA's RSL Calculator Surface Water Module for a recreational receptor with site-specific assumptions for swimming exposure. The RSL is based on an HQ of 0.1 and the most conservative child receptor (0 to 6 years) for this scenario. The following default factors for a child receptor in the surface water module of the RSL calculator were applied: child body weight (15 kg), ingestion rate (0.12 L/hour), exposed skin area (6,365 cm2), and exposure time of 3 hours per event, and an event frequency of 1 event per day. Screening levels are not available for wastewater. Therefore, to be conservative the surface water screening levels will be applied to wastewater because exposures to wastewater are anticipated to be less frequent than surface water.

5 - Surface water ESVs were derived from the lowest of the aquatic organism, mammal, or bird values from Grippo, et al. (2021), if available. Otherwise, the lower of the screening levels from the two SERDP documents (Condor, et al. [2020]) was selected. PFDoA/PFDoDA, PFHpA, and PFUnA/PFUDA were not evaluated in Grippo, et al. (2021); therefore, the minimum value from Divine, et al. (2020) (excluding values for the harbor seal) was selected for those compounds.

6 - Calculated using the USEPA's RSL Calculator Soil/Sediment Module for a recreational receptor with site-specific assumptions for sediment exposure. The RSL is based on an HQ of 0.1 and the most conservative child receptor (0 to 6 years) for this scenario. The following default factors for a child receptor in the soil/Sediment module of the RSL calculator were applied: child body weight (15 kg), exposure duration (6 years), incidental ingestion rate (200 mg/day), exposure time of 3 hours per day. 7 - The only sediment ESV for sediment invertebrates was derived from the Environmental Agency (2004) for PFOS. Additional sediment screening values were developed for birds and mammals as presented in Table 11a of Divine et al. (2020) from which the lowest of the sediment invertebrate, mammal, or bird screening values was selected as the ESV.

NEtEOSAA - N-ethyl perfluorooctanesulfonamidoacetic acid

NMeFOSAA - N-methyl perfluorooctanesulfonamidoacetic acid

HFPO-DA - Hexafluoropropylene oxide dimer acid

ADONA - 4,8-Dioxa-3H-perfluorononanoic acid

9CI-PF3ONS - 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid

11CI-PF3OUdS - 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid

Table A-3 LTM Data Summary Table Waste Oil Dump NASA Wallops Flight Facility, Wallops Island, Virginia Page 1 of 12

LOCATION					15-MW0	01			
SAMPLE ID	Cleanup Level	15-MW001-20130319	15-MW001-20130903	15-MW001-20140319	15-MW001_20140922	15-MW001-20150316	15-MW001-20150923	15-MW001-20160412	15-MW001-20160926
SAMPLE DATE	(μg/L)	20130319	20130903	20140319	20140922	20150316	20150923	20160412	20160926
SAMPLE CODE		NORMAL							
MATRIX		GW							
VOLATILES (µg/L)									
BENZENE	5	0.11 U	0.25 U	0.25 U	NA	NA	NA	NA	NA
METALS (μg/L)									
ARSENIC	10	11	13	11	8 J	12	15	18	20
DISSOLVED METALS (µg/L)									
ARSENIC	10	11	11	10	9.8	11	14	17	19
FIELD (MG/L)									
DISSOLVED OXYGEN	NA	1	0.1	0.4	NA	NA	NA	NA	NA
DISSOLVED OXYGEN - HORIBA	NA	0.59	0	0	NA	NA	NA	NA	NA
SALINITY (%)	NA	NA	NA	0.1	NA	NA	NA	NA	NA
TEMPERATURE (deg C)	NA	11.2	20.58	10.86	NA	NA	NA	NA	NA
SPECIFIC CONDUCTANCE (ms/cm)	NA	0.16	0.122	0.135	NA	NA	NA	NA	NA
OXIDATION REDUCTION POTENTIAL (mv)	NA	-32	175	4	NA	NA	NA	NA	NA
TURBIDITY (ntu)	NA	2.1	2.3	1.06	NA	NA	NA	NA	NA
PH (s.u.)	NA	5.99	5.55	5.79	NA	NA	NA	NA	NA

µg/L- micrograms per liter

mg/L- miligrams per liter

Notes:

1. Cleanup levels are defined in the 2008 Record of Decision (ROD).

Table A-3 LTM Data Summary Table Waste Oil Dump NASA Wallops Flight Facility, Wallops Island, Virginia Page 2 of 12

LOCATION		15-MW001				15-M	W002		
SAMPLE ID	15-MW001-20171017	15-MW001-20200721	15-MW001-20220907	15-MW002-20130319	15-MW002-20130903	15-MW002-20140319	15-MW002-20140922	15-MW002-20150316	15-MW002-20150923
SAMPLE DATE SAMPLE CODE	20171017 NORMAL	20200701 NORMAL	20220907 NORMAL	20130319 NORMAL	20130903 NORMAL	20140319 NORMAL	20140922 NORMAL	20150316 NORMAL	20150923 NORMAL
MATRIX	GW								
VOLATILES (µg/L)									
BENZENE	NA	NA	NA	0.11 U	0.25 U	0.25 U	NA	NA	NA
METALS (μg/L)									
ARSENIC	21	30	39	1.9	5.1 J	2.8 J	3.2 J	1.6	4.3 J
DISSOLVED METALS (µg/L)									
ARSENIC	21	34	41	1.7	4.8 J	2.5 U	4	3.1	4 J
FIELD (MG/L)									
DISSOLVED OXYGEN	NA	0	NA	0.2	0.1	0.6	NA	NA	NA
DISSOLVED OXYGEN - HORIBA	NA	0	0.36	0.12	0	0	NA	NA	NA
SALINITY (%)	NA	NA	NA	NA	NA	0	NA	NA	NA
TEMPERATURE (deg C)	NA	16.56	18.3	10.8	20.41	8.31	NA	NA	NA
SPECIFIC CONDUCTANCE (ms/cm)	NA	0.156	0.205	0.125	0.093	0.085	NA	NA	NA
OXIDATION REDUCTION POTENTIAL (mv)	NA	-14	-169.3	64	260	19	NA	NA	NA
TURBIDITY (ntu)	NA	1.36	2.22	81.7	3.72	52.9	NA	NA	NA
PH (s.u.)	NA	6.3	6.56	4.53	5	5.55	NA	NA	NA

µg/L- micrograms per liter

mg/L- miligrams per liter

Notes:

1. Cleanup levels are defined in the 2008 Record of Decision (ROD).

Table A-3 LTM Data Summary Table Waste Oil Dump NASA Wallops Flight Facility, Wallops Island, Virginia Page 3 of 12

LOCATION		15-M	W002			15-MW	/007	
SAMPLE ID	15-MW002-20160412	15-MW002-20160926	15-MW002-20171017	15-MW002-20200721	15-MW007-20130318	15-MW007-20130318-AVG	15-MW007-20130318-D	15-MW007-20130903
SAMPLE DATE	20160412	20160926	20171017	20200721	20130318	20130318	20130318	20130903
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	ORIG	AVG	DUP	ORIG
MATRIX	GW	GW	GW	GW	GW	GW	GW	GW
VOLATILES (µg/L)								
BENZENE	NA	NA	NA	NA	0.11 U	0.11 U	0.11 U	0.51 J
METALS (µg/L)								
ARSENIC	5 U	4.8 J	5.5	5.4	0.29 U	0.3275	0.51 J	3.3 J
DISSOLVED METALS (µg/L)								
ARSENIC	2.9 U	7	4.4 J	5.4	1.9	1.0225	0.29 U	3.2 J
FIELD (MG/L)								
DISSOLVED OXYGEN	NA	NA	NA	9	0.4	0.4	NA	4
DISSOLVED OXYGEN - HORIBA	NA	NA	NA	19.26	0.55	0.55	NA	5.09
SALINITY (%)	NA	NA	NA	NA	NA	NA	NA	NA
TEMPERATURE (deg C)	NA	NA	NA	19.55	12.67	12.67	NA	21.71
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	NA	0.092	0.096	0.096	NA	0.074
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	NA	6	101	101	NA	-122
TURBIDITY (ntu)	NA	NA	NA	5.12	23.8	23.8	NA	3.02
PH (s.u.)	NA	NA	NA	6.33	4.61	4.61	NA	4.95

µg/L- micrograms per liter

mg/L- miligrams per liter

Notes:

1. Cleanup levels are defined in the 2008 Record of Decision (ROD).

Table A-3 LTM Data Summary Table Waste Oil Dump NASA Wallops Flight Facility, Wallops Island, Virginia Page 4 of 12

LOCATION				15-MW	007			
SAMPLE ID	15-MW007-20130903-AVG	15-MW007-20130903-D	15-MW007-20140319	15-MW007-20140319-AVG	15-MW007-20140319-D	15-MW007_20140922	15-MW007_20140922-AVG	15-MW007_20140922-D
SAMPLE DATE	20130903	20130903	20140319	20140319	20140319	20140922	20140922	20140922
SAMPLE CODE	AVG	DUP	ORIG	AVG	DUP	ORIG	AVG	DUP
MATRIX	GW	GW	GW	GW	GW	GW	GW	GW
VOLATILES (µg/L)								
BENZENE	0.525	0.54 J	0.5 J	0.48	0.46 J	NA	NA	NA
METALS (μg/L)								
ARSENIC	3.05	2.8 J	4.1 J	4.05	4 J	3.3 J	3.8	4.3 J
DISSOLVED METALS (µg/L)								
ARSENIC	3.05	2.9 J	3.3 U	3.35 U	3.4 U	1.7	2.3	2.9
FIELD (MG/L)								
DISSOLVED OXYGEN	4	NA	0.3	0.3	NA	NA	NA	NA
DISSOLVED OXYGEN - HORIBA	5.09	NA	0	0	NA	NA	NA	NA
SALINITY (%)	NA	NA	0	0	NA	NA	NA	NA
TEMPERATURE (deg C)	21.71	NA	15.12	15.12	NA	NA	NA	NA
SPECIFIC CONDUCTANCE (ms/cm)	0.074	NA	0.094	0.094	NA	NA	NA	NA
OXIDATION REDUCTION POTENTIAL (mv)	-122	NA	-5	-5	NA	NA	NA	NA
TURBIDITY (ntu)	3.02	NA	4.31	4.31	NA	NA	NA	NA
PH (s.u.)	4.95	NA	5.12	5.12	NA	NA	NA	NA

µg/L- micrograms per liter

mg/L- miligrams per liter

Notes:

1. Cleanup levels are defined in the 2008 Record of Decision (ROD).

Table A-3 LTM Data Summary Table Waste Oil Dump NASA Wallops Flight Facility, Wallops Island, Virginia Page 5 of 12

LOCATION				15-	MW007			
SAMPLE ID	15-MW007-20150316	15-MW007-20150316-AVG	15-MW007-20150316-D	15-MW007-20150923	15-MW007-20150923-AVG	15-MW007-20150923-D	15-MW007-20160412	15-MW007-20160412-AVG
SAMPLE DATE	20150316	20150316	20150316	20150923	20150923	20150923	20160412	20160412
SAMPLE CODE	ORIG	AVG	DUP	ORIG	AVG	DUP	ORIG	AVG
MATRIX	GW	GW	GW	GW	GW	GW	GW	GW
VOLATILES (µg/L)								
BENZENE	NA	NA	NA	NA	NA	NA	NA	NA
METALS (µg/L)								
ARSENIC	10	10	10	5.4	5.75	6.1	3.4 U	4.05
DISSOLVED METALS (µg/L)								
ARSENIC	9.1	9.1	9.1	5 J	5.2	5.4	3.9 U	4.1 U
FIELD (MG/L)								
DISSOLVED OXYGEN	NA	NA	NA	NA	NA	NA	NA	NA
DISSOLVED OXYGEN - HORIBA	NA	NA	NA	NA	NA	NA	NA	NA
SALINITY (%)	NA	NA	NA	NA	NA	NA	NA	NA
TEMPERATURE (deg C)	NA	NA	NA	NA	NA	NA	NA	NA
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	NA	NA	NA	NA	NA	NA
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	NA	NA	NA	NA	NA	NA
TURBIDITY (ntu)	NA	NA	NA	NA	NA	NA	NA	NA
PH (s.u.)	NA	NA	NA	NA	NA	NA	NA	NA

µg/L- micrograms per liter

mg/L- miligrams per liter

Notes:

1. Cleanup levels are defined in the 2008 Record of Decision (ROD).

Table A-3 LTM Data Summary Table Waste Oil Dump NASA Wallops Flight Facility, Wallops Island, Virginia Page 6 of 12

LOCATION				15-M\	W007			
SAMPLE ID	15-MW007-20160412-D	15-MW007-20160926	15-MW007-20160926-AVG	15-MW007-20160926-D	15-MW007-20171017	15-MW007-20171017-AVG	15-MW007-20171017-D	15-MW007-20200720
SAMPLE DATE	20160412	20160926	20160926	20160926	20171017	20171017	20171017	20200720
SAMPLE CODE	DUP	ORIG	AVG	DUP	ORIG	AVG	DUP	ORIG
MATRIX	GW	GW	GW	GW	GW	GW	GW	GW
VOLATILES (µg/L)								
BENZENE	NA	NA	NA	NA	NA	NA	NA	NA
METALS (µg/L)								
ARSENIC	6.4	3.4 J	3.2	3 J	6.4	6	5.6	51
DISSOLVED METALS (µg/L)								
ARSENIC	4.3 U	3.6 J	4.9	6.2	4.4 J	4.65	4.9 J	54
FIELD (MG/L)								
DISSOLVED OXYGEN	NA	NA	NA	NA	NA	NA	NA	0
DISSOLVED OXYGEN - HORIBA	NA	NA	NA	NA	NA	NA	NA	0
SALINITY (%)	NA	NA	NA	NA	NA	NA	NA	NA
TEMPERATURE (deg C)	NA	NA	NA	NA	NA	NA	NA	21.67
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	NA	NA	NA	NA	NA	0.266
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	NA	NA	NA	NA	NA	-79
TURBIDITY (ntu)	NA	NA	NA	NA	NA	NA	NA	2.04
PH (s.u.)	NA	NA	NA	NA	NA	NA	NA	6.34

µg/L- micrograms per liter

mg/L- miligrams per liter

Notes:

1. Cleanup levels are defined in the 2008 Record of Decision (ROD).
Table A-3 LTM Data Summary Table Waste Oil Dump NASA Wallops Flight Facility, Wallops Island, Virginia Page 7 of 12

LOCATION	15-MW0	07	WOD-N	/W001		WOD-N	1W002D			
SAMPLE ID	15-MW007-DUP01-20200720	15-MW007-20220907	WOD-MW001-20130318	WOD-MW001-20130904	WOD-MW002D-20130318	WOD-MW002D-20130903	WOD-MW002D-20140319	WOD-MW002D-20140922		
SAMPLE DATE	20200720	20220907	20130318	20130904	20130318	20130903	20140319	20140922		
SAMPLE CODE	DUP	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL		
MATRIX	GW	GW	GW	GW	GW	GW	GW	GW		
VOLATILES (μg/L)										
BENZENE	NA	NA	0.11 U	0.25 U	4.5	2 J	1.2 J	NA		
METALS (µg/L)										
ARSENIC	59	29	0.29 U	5 J	13	16	11	9 J		
DISSOLVED METALS (µg/L)										
ARSENIC	56	28	0.29 U	1.2 U	9	15	8.8 J	8.7		
FIELD (MG/L)										
DISSOLVED OXYGEN	0	NA	3	NA	0.1	1 <	0.6	NA		
DISSOLVED OXYGEN - HORIBA	0	0.43	8.19	NA	0.01	0.2	0	NA		
SALINITY (%)	NA	NA	NA	NA	NA	NA	0	NA		
TEMPERATURE (deg C)	21.67	19.4	12.58	NA	11.66	21.68	13.05	NA		
SPECIFIC CONDUCTANCE (ms/cm)	0.266	0.181	0.232	NA	0.237	0.115	0.159	NA		
OXIDATION REDUCTION POTENTIAL (mv)	-79	-136.9	271	NA	-34	-83	-33	NA		
TURBIDITY (ntu)	2.04	4.35	0.62	NA	17.3	7.58	24.6	NA		
PH (s.u.)	6.34	5.90	5.82	NA	6.25	6.05	6.23	NA		

µg/L- micrograms per liter

mg/L- miligrams per liter

Notes:

1. Cleanup levels are defined in the 2008 Record of Decision (ROD).

Table A-3 LTM Data Summary Table Waste Oil Dump NASA Wallops Flight Facility, Wallops Island, Virginia Page 8 of 12

LOCATION				WOD-M\	W002D			
SAMPLE ID	WOD-MW002D-20150316	WOD-MW002D-20150923	WOD-MW002D-20160411	WOD-MW002D-20160926	WOD-MW002D-20171017	WOD-MW002D-20200720	WOD-MW002D-20220907	WOD-DUP01-20220907
SAMPLE DATE SAMPLE CODE	20150316 NORMAL	20150923 NORMAL	20160411 NORMAL	20160926 NORMAL	20171017 NORMAL	20200720 NORMAL	20220907 ORIGINAL	20220907 DUPLICATE
MATRIX	GW	GW						
VOLATILES (µg/L)								
BENZENE	NA	NA						
METALS (μg/L)								
ARSENIC	9.1	11	16	14	11	6.2	2.6	2.6
DISSOLVED METALS (µg/L)								
ARSENIC	9.5	11	15	14	9.4	7.2	2.3	2.6
FIELD (MG/L)								
DISSOLVED OXYGEN	NA	NA	NA	NA	NA	4	NA	NA
DISSOLVED OXYGEN - HORIBA	NA	NA	NA	NA	NA	0.80	0.93	0.93
SALINITY (%)	NA	NA						
TEMPERATURE (deg C)	NA	NA	NA	NA	NA	17.92	18.4	18.4
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	NA	NA	NA	0.11	0.107	0.107
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	NA	NA	NA	36	-40.7	-40.7
TURBIDITY (ntu)	NA	NA	NA	NA	NA	2.9	0.23	0.23
PH (s.u.)	NA	NA	NA	NA	NA	5.86	6.30	6.30

µg/L- micrograms per liter

mg/L- miligrams per liter

Notes:

1. Cleanup levels are defined in the 2008 Record of Decision (ROD).

Table A-3 LTM Data Summary Table Waste Oil Dump NASA Wallops Flight Facility, Wallops Island, Virginia Page 9 of 12

LOCATION				WOD-MW002S						
SAMPLE ID	WOD-MW002S-20130318	WOD-MW002S-20130903	WOD-MW002S-20140319	WOD-MW002S_20140922	WOD-MW002S-20150316	WOD-MW002S-20150923	WOD-MW002S-20160412			
SAMPLE DATE	20130318	20130903	20140319	20140922	20150316	20150923	20160412			
SAMPLE CODE	NORMAL									
MATRIX	GW									
VOLATILES (µg/L)										
BENZENE	0.11 U	0.25 U	0.25 U	NA	NA	NA	NA			
METALS (µg/L)										
ARSENIC	0.29 U	5.4 J	1.7 J	2.8 J	3.8	7.3	3.8 U			
DISSOLVED METALS (µg/L)										
ARSENIC	2	4.4 J	1.3 U	6.6	2.3	5.5	2.3 U			
FIELD (MG/L)										
DISSOLVED OXYGEN	1	2	3	NA	NA	NA	NA			
DISSOLVED OXYGEN - HORIBA	3.15	1.91	2.44	NA	NA	NA	NA			
SALINITY (%)	NA	NA	0	NA	NA	NA	NA			
TEMPERATURE (deg C)	10.52	19.2	11.62	NA	NA	NA	NA			
SPECIFIC CONDUCTANCE (ms/cm)	0.313	0.141	0.244	NA	NA	NA	NA			
OXIDATION REDUCTION POTENTIAL	0	20	20	NA	NA	NA	NA			
(mv)	9	-26	28	NA	NA	NA	NA			
TURBIDITY (ntu)	4.03	19.2	17.76	NA	NA	NA	NA			
PH (s.u.)	6.73	6.35	6.45	NA	NA	NA	NA			

µg/L- micrograms per liter

mg/L- miligrams per liter

Notes:

1. Cleanup levels are defined in the 2008 Record of Decision (ROD).

Table A-3 LTM Data Summary Table Waste Oil Dump NASA Wallops Flight Facility, Wallops Island, Virginia Page 10 of 12

LOCATION	WOD-N	1W002S			WOD-MW003R		
SAMPLE ID	WOD-MW002S-20160926	WOD-MW002S-20171017	WOD-MW003R-20130318	WOD-MW003R-20130903	WOD-MW003R-20140319	WOD-MW003R_20140922	WOD-MW003R-20150316
SAMPLE DATE SAMPLE CODE	20160926 NORMAL	20171017 NORMAL	20130318 NORMAL	20130903 NORMAL	20140319 NORMAL	20140922 NORMAL	20150316 NORMAL
MATRIX	GW						
VOLATILES (µg/L)		500	500	500	500	500	
BENZENE	NA	NA	0.11 U	0.25 U	0.25 U	NA	NA
METALS (μg/L)							
ARSENIC	2.9 J	2.3 U	1.2	1.2 U	1.2 U	0.29 UJ	0.29 U
DISSOLVED METALS (µg/L)							
ARSENIC	2.3 U	2.3 U	0.75 J	1.2 U	1.2 U	0.29 U	0.34 J
FIELD (MG/L)							
DISSOLVED OXYGEN	NA	NA	10	6	6	NA	NA
DISSOLVED OXYGEN - HORIBA	NA	NA	7.74	5.61	5.99	NA	NA
SALINITY (%)	NA	NA	NA	NA	0	NA	NA
TEMPERATURE (deg C)	NA	NA	13.09	22.49	14.6	NA	NA
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	0.119	0.056	0.061	NA	NA
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	354	173	208	NA	NA
TURBIDITY (ntu)	NA	NA	0.6	7.14	0.17	NA	NA
PH (s.u.)	NA	NA	6.26	6.01	5.8	NA	NA

µg/L- micrograms per liter

mg/L- miligrams per liter

Notes:

1. Cleanup levels are defined in the 2008 Record of Decision (ROD).

Table A-3 LTM Data Summary Table Waste Oil Dump NASA Wallops Flight Facility, Wallops Island, Virginia Page 11 of 12

LOCATION		WOD-N	1W003R			WOD-MW008				
SAMPLE ID	WOD-MW003R-20150923	WOD-MW003R-20160926	WOD-MW003R-20171017	WOD-MW003R-20200721	WOD-MW008-20130318	WOD-MW008-20130903	WOD-MW008-20140319			
SAMPLE DATE	20150923	20160926	20171017	20200721	20130318	20130903	20140319			
SAMPLE CODE	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL			
MATRIX	GW	GW	GW	GW	GW	GW	GW			
VOLATILES (µg/L)										
BENZENE	NA	NA	NA	NA	0.11 U	0.25 U	0.25 U			
METALS (μg/L)										
ARSENIC	2.3 U	2.3 U	2.3 U	3.0 U	0.29 U	1.2 U	1.2 U			
DISSOLVED METALS (µg/L)										
ARSENIC	2.3 U	2.3 U	2.3 U	3.0 U	0.29 U	1.2 U	1.2 U			
FIELD (MG/L)										
DISSOLVED OXYGEN	NA	NA	NA	7	2	7	5			
DISSOLVED OXYGEN - HORIBA	NA	NA	NA	8.27	7.69	6.65	5.43			
SALINITY (%)	NA	NA	NA	NA	NA	NA	0			
TEMPERATURE (deg C)	NA	NA	NA	19.22	10.98	22.71	13.22			
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	NA	0.089	0.097	0.06	0.098			
OXIDATION REDUCTION POTENTIAL	NA	NA	NA	258	231	366	222			
(mv)	175			230	231	500	222			
TURBIDITY (ntu)	NA	NA	NA	0	0.15	1.7	2.98			
PH (s.u.)	NA	NA	NA	5.95	5.34	4.91	5.44			

µg/L- micrograms per liter

mg/L- miligrams per liter

Notes:

1. Cleanup levels are defined in the 2008 Record of Decision (ROD).

Table A-3 LTM Data Summary Table Waste Oil Dump NASA Wallops Flight Facility, Wallops Island, Virginia Page 12 of 12

LOCATION				WOD-MW008						
SAMPLE ID	WOD-MW008-20140922	WOD-MW008-20150316	WOD-MW008-20150923	WOD-MW008-20160411	WOD-MW008-20160926	WOD-MW008-20171017	WOD-MW008-20200720			
SAMPLE DATE SAMPLE CODE	20140922 NORMAL	20150316 NORMAL	20150923 NORMAL	20160411 NORMAL	20160926 NORMAL	20171017 NORMAL	20200720 NORMAL			
MATRIX	GW									
VOLATILES (µg/L)										
BENZENE	NA									
METALS (μg/L)										
ARSENIC	0.29 UJ	0.34 J	2.3 U	2.3 U	2.3 U	2.3 U	3.0 U			
DISSOLVED METALS (µg/L)										
ARSENIC	1.7	0.29 U	2.3 U	2.3 U	2.3 U	2.3 U	3.0 U			
FIELD (MG/L)										
DISSOLVED OXYGEN	NA	NA	NA	NA	NA	NA	6			
DISSOLVED OXYGEN - HORIBA	NA	NA	NA	NA	NA	NA	8.62			
SALINITY (%)	NA									
TEMPERATURE (deg C)	NA	NA	NA	NA	NA	NA	18.64			
SPECIFIC CONDUCTANCE (ms/cm)	NA	NA	NA	NA	NA	NA	0.087			
OXIDATION REDUCTION POTENTIAL (mv)	NA	NA	NA	NA	NA	NA	319			
TURBIDITY (ntu)	NA	NA	NA	NA	NA	NA	0			
PH (s.u.)	NA	NA	NA	NA	NA	NA	6.22			

µg/L- micrograms per liter

mg/L- miligrams per liter

Notes:

1. Cleanup levels are defined in the 2008 Record of Decision (ROD).

TABLE A-4 PFAS SUMMARY DATA TABLE WOD NASA WALLOPS FLIGHT FACILITY WALLOPS ISLAND, VIRGINIA

Sample ID	Sample Depth (feet)	Sample Date	PFOA	PFOS	Total PFOA/PFOS	PFBS	PFDA	PFDoA or PFDoDA	PFHpA	PFHxS	PFHxA	PFNA	PFTA or PFTetA	PFTrDA	PFUnA or PFUDA	NEtFOSAA	NMeFOSAA
Groundwater (ng/L)		Screening Levels	6 ⁽¹⁾	4 ⁽¹⁾	NSL	600 ⁽¹⁾	NSL	NSL	NSL	39 ⁽¹⁾	990 ⁽¹⁾	5.9 ⁽¹⁾	NSL	NSL	NSL	NSL	NSL
15-MW007-20190410	15 - 30	4/10/2019	1.7 J	0.74 J	2.44	1.7 J	0.52 J	0.52 U	0.24 U	8.8	2.4 J	0.55 J	0.53 U	1.2 UJ	1 UJ	1.8 U	3 U
15-MW007-20190410-D	15 - 30	4/10/2019	0.77 U	0.49 U	ND	1.4 J	0.28 U	0.5 U	0.23 U	8.1	2.4	0.25 U	0.26 U	1.2 U	1 U	1.7 U	2.8 U
WOD-MW002D-20190409	23 - 28	4/9/2010	4.9	5.8 J	10.7	0.18 U	0.28 U	0.58 J	5.3	3.4	3.5	3	0.7 U	1.2 U	1 U	1.7 U	2.8 U
WOD-MW008-20190409	18 - 28	4/9/2019	11	21	32	0.18 U	0.27 U	0.48 U	8.9	4.7	5.6	6.2	0.25 U	1.1 U	0.97 U	1.7 U	2.7 U

Notes:

Bolded and shaded values indicate an exceedance of the human health screening levels

1. USEPA RSL (May 2023) for Tapwater and an HQ of 0.1 due to noncancer additive effects.

ng/L - nanograms per liter

-D - duplicate sample

J - estimated value

U - non-detect value

ND - not detected

NSL - no screening level

PFOA - Perfluorooctanoic acid PFOS - Perfluorooctanesulfonic acid PFBS - Perfluorobutanesulfonic acid PFDA - Perfluorodecanoic acid PFDoA or PFDoDA- Perfluorododecanoic acid PFHpA - Perfluoroheptanoic acid PFHxS - Perfluorohexanesulfonic acid

PFHxA - Perfluorohexanoic acid PFNA - Perfluorononanoic acid PFTA or PFTetA - Perfluorotetradecanoic acid PFTrDA - Perfluorotridecanoic acid PFUnA or PFUDA - Perfluoroundecanoic acid NEtFOSAA - N-ethyl perfluorooctanesulfonamidoacetic acid NMeFOSAA - N-methyl perfluorooctanesulfonamidoacetic acid

APPENDIX B

ANALYTICAL DATA GRAPHS

This page intentionally left blank

APPENDIX C

SITE PHOTOGRAPHS

This page intentionally left blank

FFTA monitoring well are visible in the distance.

View of FFTA-MW055S and FFTA-MW055D. Other than some rust the well are in good condition.

Date:	View:	Photographer:
5/17/2023	East	J. Martone (Tetra Tech; contractor for NASA)

Date: 5/17/23	View: Northwest	Photographer: J. Martone (Tetra Tech; contractor for NASA)

Standing next to Gate 11 looking down the facility perimeter fence from inside the facility.

APPENDIX D

SITE INSPECTIONS AND INTERVIEWS

This page intentionally left blank

Site Inspection Checklist

I. SITE INFORMATION								
Site name: NASA Wallops Flight Facility (WFF) Former Fire Training Area (FFTA)	Date of inspection: May 17, 2023							
Location and Region: Wallops Island, Virginia EPA Region 3	EPA ID: VA8800010763							
Agency, office, or company leading the five-year review: NASA	Weather/temperature: Partly Cloudy / 74°F							
Remedy Includes: (Check all that apply): Image: Monitored natural attenuation Image: Landfill cover/containment Image: Monitored natural attenuation Image: Access controls Image: Groundwater containment Image: Institutional controls Image: Groundwater containment Image: Groundwater pump and treatment Image: Surface water collection and treatment Image: Other - In-Situ Biological Treatment Image: Surface water collection and treatment								
Attachments: 🛛 Photo Log 🗌 Site map	attached							
II. INTERVIEWS	(Check all that apply):							
O&M site manager: David Liu NASA Project Coordinator [Questionnaire] Name Title Date Interviewed □ at site □ at office ⊠ by phone/email Phone No.: (757) 824-2141 Email: david.liu-1@nasa.gov Problems, suggestions; ⊠ Report attached - [See Five-Year Review Interview Questionnaire]								
 O&M staff: N/A Name Interviewed □ at site □ at office □ by phone/email Problems, suggestions; □ Report attached - 	Title Date Phone No.:							
 Local regulatory authorities and response agencies office, police department, office of public health or er other city and county offices, etc.) Fill in all that appl Agency: U.S. Environmental Protection Agency (EPA Contact: Lorie Baker Project Manager Name Title 	vironmental health, zoning office, recorder of deeds, or y:							
Email: Baker.Lori@epa.gov Problems; suggestions; ⊠ Report attached - [See Five								
Agency: Virginia Department of Environmental Qual: Contact: Michelle Payne Project Manager Name Title Email: Michelle.Payne@deq.virginia.gov Problems; suggestions; ⊠ Report attached - [See Five	[Questionnaire] (804) 698-4014 Date Phone No.:							
4. Other interviews (optional) \Box Report attached.								

	III. ON-SITE DOCUMENTS & RI	ECORDS VERIFIED (Ch	neck all that apply	/):
1.	O&M Documents O&M manual As-built drawings Maintenance logs Remarks: Long-Term Monitoring Plan for g	 Readily available Readily available Readily available groundwater and LUC Rem 	 ☑ Up to date ☐ Up to date ☐ Up to date ☐ Up to date edial Design avai 	□ N/A ⊠ N/A ⊠ N/A lable.
2.	Site-Specific Health and Safety Plan Contingency plan/emergency response p Remarks:	□ Readily available lan □ Readily available	☑ Up to date □ Up to date	□ N/A ⊠ N/A
3.	O&M and OSHA Training Records Remarks:	□ Readily available	□ Up to date	⊠ N/A
4.	Permits and Service Agreements Air discharge permit Effluent discharge Waste disposal, POTW Other permits - Remarks: 	 □ Readily available □ Readily available ⊠ Readily available □ Readily available 	 Up to date 	⊠ N/A ⊠ N/A ⊠ N/A ⊠ N/A
5.	Gas Generation Records Remarks:	□ Readily available	□ Up to date	⊠ N/A
6.	Settlement Monument Records Remarks:	□ Readily available	□ Up to date	⊠ N/A
7.	Groundwater Monitoring Records Remarks: Provided to regulators upon issue	⊠ Readily available and maintained by NASA.	⊠ Up to date	□ N/A
8.	Leachate Extraction Records Remarks:	□ Readily available	□ Up to date	⊠ N/A
9.	Discharge Compliance Records Air Water (effluent) Remarks:	 □ Readily available □ Readily available 	□ Up to date □ Up to date	⊠ N/A ⊠ N/A
10.	Daily Access/Security Logs Remarks:	□ Readily available	Up to date	X/A

IV. O&M COSTS									
1.	O&M Organiz ☐ State in-hous ☐ PRP in-hous ⊠ Federal Facil ☐ Other –	e e	 □ Contractor for State □ Contractor for PRP ⊠ Contractor for Fede 						
2.	O&M Cost Red □ Readily avai □ Funding med Original O&M d	lable 🗌 U _l hanism/agreeme cost estimate:	-	□ Breakdown attached					
		Total annua	ll cost by year for review p	period if available					
	From	То		Breakdown attached					
	Date	Date To	Total cost	□ Breakdown attached					
	From Date	Date	Total cost						
	From	To		Breakdown attached					
	Date	Date	Total cost						
	From Date	To Date	Total cost	Breakdown attached					
	From	То	100010051	□ Breakdown attached					
	Date	Date	Total cost						
3.	Describe costs a access to wells.	nd reasons: Non		Review Period Ill maintenance and vegetation clearing for OLS					
A. Fe	ncing								
1.	Fencing damag		ocation shown on site map site. Overall facility bour						
B. Ot	her Access Restri	ctions							
1.				shown on site map \square N/A perty of NASA WFF; facility and site access					
C.	Institutional Controls (ICs)								
----	--								
1.	Implementation and enforcementSite conditions imply ICs not properly implemented □ Yes No □ N/A Site conditions imply ICs not being fully enforced □ Yes No □ N/A								
	Type of monitoring (e.g., self-reporting, drive by): Drive by / Site walk with self-reporting.Annual inspections: Inspected during each groundwater monitoring eventResponsible party/agency: NASW WFF prime [on-site] contractor. Bluestone Environmental.Contact: Susan DunnEnvironmental Scientist05/17/2023(757) 824-1832NameTitleDatePhone No.:								
	Reporting is up-to-dateImage: YesImage: NoImage: N/AReports are verified by the lead agencyImage: YesImage: NoImage: N/A								
	Specific requirements indeed or decision documents have been metImage: YesNoN/AViolations have been reportedImage: YesNoN/AOther problems or suggestions:Image: Report attached -NoN/A								
2.	Adequacy \boxtimes ICs are adequate \square ICs are inadequate \square N/ARemarks: Site is located within the controlled federal property of NASA WFF; facility and site access are restricted. Groundwater at the site is not used or accessed, other than for environmental monitoring.								
D.	General								
1.	Vandalism/trespassing Location shown on site map Mo vandalism evident Remarks:								
2.	Land use changes on site \Box N/A Remarks: Land use has not changed since the last FYR event on July 10, 2018.								
3.	Land use changes off site N/A Remarks: None observed or reported								
	VI. GENERAL SITE CONDITIONS								
A.	Roads								
1.	Roads damaged \Box Location shown on site map \Box Roads adequate \boxtimes N/ARemarks: No roads present at FFTA. An abandoned taxiway runs adjacent to the FFTA area but is maintained by the facility. \Box N/A								
B.	Other Site Conditions								
	Remarks: The stairway down to 14-MW004 and 14-MW005 is in fair condition. Vegetation observed encroaching FFTA area wells 14-MW001, 14-MW002, and FFTA-MW105D. Vegetation should be cleared/trimmed back prior to future inspection and/or sampling events.								

	VII. LANDFILL COVERS				
A. La	andfill Surface				
1.	Settlement - (Low spots) Areal extent: Remarks: N/A	□ Location shown on site map Depth:	□ Settlement not evident		
2.	Cracks Lengths: Remarks: N/A	□ Location shown on site map Widths:	□ Cracking not evident Depths:		
3.	Erosion Areal extent: Remarks: N/A	□ Location shown on site map Depth:	□ Erosion not evident		
4.	Holes Areal extent: Remarks: N/A	□ Location shown on site map Depth:	□ Holes not evident		
5.	Vegetative Cover □ Gr □ Trees/Shrubs (indicate size an Remarks: N/A	1 1 2	lished □ No signs of stress		
6.	Alternative Cover (armored ro Remarks: N/A	ck, concrete, etc.) 🗌 N/A			
7.	Bulges Areal extent: Remarks: N/A	☐ Location shown on site map Height:	□ Bulges not evident		
8.	Wet Areas/Water Damage	□ Wet areas/water damage not e	evident		
	\Box Wet areas	\Box Location shown on site map	Areal extent:		
	□ Ponding	\Box Location shown on site map	Areal extent:		
		\Box Location shown on site map	Areal extent:		
	□ Soft subgrade Remarks: N/A	\Box Location shown on site map	Areal extent:		
9.	Slope Instability□Areal extent: Remarks: N/A	□ Location shown on site map	□ No evidence of slope instability		
B. Be	(Horizontally constructed mound	⊠ N/A Is of earth placed across a steep land by of surface runoff and intercept and			
1.	Flows Bypass Bench Remarks:	□ Location shown on site map	⊠ N/A or okay		

2.	Bench Breached Remarks:	\Box Location shown on site map \boxtimes N/A or okay	
3.	Bench Overtopped Remarks:	\Box Location shown on site map \boxtimes N/A or okay	
C. Let	(Channel lined with eros	plicable \boxtimes N/A ion control mats, riprap, grout bags, or gabions that descend down the steep side low the runoff water collected by the benches to move off of the landfill cover gullies.)	
1.	Settlement Areal extent: Remarks: N/A	\Box Location shown on site map \Box No evidence of settlement Depth:	
2.	Material Degradation Material type: Remarks: N/A	\Box Location shown on site map \Box No evidence of degradation Areal extent:	
3.	Erosion Areal extent: Remarks: N/A	\Box Location shown on site map \Box No evidence of erosion Depth:	
4.	Undercutting Areal extent: Remarks: N/A	\Box Location shown on site map \Box No evidence of undercutting Depth:	
5.	Obstructions Type: Image: No obstructions Image: Location shown on site map Areal extent: Size: Remarks: N/A Size: Size:		
6.	Excessive Vegetative Growth Type: In No evidence of excessive growth Vegetation in channels does not obstruct flow In Location shown on site map Areal extent: Remarks: N/A N/A		
D. Co	ver Penetrations 🛛 App	plicable \boxtimes N/A	
1.	Gas Vents ☐ Properly secured/lock ☐ Evidence of leakage a Remarks:		
2.	Gas Monitoring Probes ☐ Properly secured/lock ☐ Evidence of leakage a Remarks:	ted \Box Functioning \Box Routinely sampled \Box Good condition	

3.	Monitoring Wells (within surface area of landfill) Properly secured/locked Functioning Evidence of leakage at penetration Remarks:		☐ Good condition ⊠ N/A
4.	Leachate Extraction Wells Properly secured/locked Evidence of leakage at penetration Remarks: 	g	□ Good condition ⊠ N/A
5.	Settlement Monuments	□ Routinely surveyed	⊠ N/A
Е.	Gas Collection and Treatment	🖾 N/A	
1.	Gas Treatment Facilities□Flaring□Thermal destruction□Good condition□Needs MaintenanceRemarks: N/A	□ Collection for reuse	
2.	Gas Collection Wells, Manifolds and Piping ☐ Good condition ☐ Needs Maintenance Remarks: N/A		
3.	Gas Monitoring Facilities (<i>e.g.</i> , gas monitoring of □ Good condition □ Needs Maintenance Remarks:	f adjacent homes or building ⊠ N/A	js)
F. (Cover Drainage Layer Applicable	🖾 N/A	
1.	Outlet Pipes Inspected	5 2	⊠ N/A
2.	Outlet Rock Inspected	3	⊠ N/A
G.	Detention/Sedimentation Ponds	🖾 N/A	
1.	SiltationAreal extent:□□Siltation not evidentRemark	Depth:	⊠ N/A
2.	ErosionAreal extent:D⊠ Erosion not evidentRemarks:	Depth:	
3.	Outlet Works □ Functioning ⊠ N/. Remarks:	Ā	

4.	Dam Remarks:	□ Functioning	⊠ N/A	
Н.	Retaining Walls	□ Applicable	⊠ N/A	
1.	Deformations Horizontal displacement: Rotational displacement: Remarks: N/A	□ Location show	wn on site map Vertical displace	□ Deformation not evident ement:
2.	Degradation Remarks: N/A	\Box Location show	wn on site map	Degradation not evident
I.	Perimeter Ditches/Off-Site Dis	scharge	□ Applicable	⊠ N/A
1.	Siltation Areal extent: Remarks: N/A	ation shown on site Depth:	e map □ Silta	tion not evident
2.	Vegetative Growth Vegetation does not in Areal extent: Remarks: N/A	□ Location shownpede flow Type:	wn on site map	⊠ N/A
3.	Erosion Areal extent: Remarks: N/A	□ Location show Depth:	wn on site map	□ Erosion not evident
4.	Discharge Structure Remarks:	□ Functioning	⊠ N/A	
	VIII. VER	TICAL BARRIE	R WALLS	Applicable 🛛 N/A
1.	Settlement Areal extent: Remarks: N/A	□ Location show Depth:	wn on site map	□ Settlement not evident
2.	Performance Monitorin	g		
	Type of monitoring: Frequency: Head differential: Remarks: N/A			nce not monitored e of breaching
	IX. GROUNDWATI	ER/SURFACE W	VATER REMEDI	ES 🛛 Applicable 🗌 N/A
A.	Groundwater Extraction We	lls, Pumps, and F	Pipelines	\Box Applicable \boxtimes N/A
1.	Pumps, Wellhead Pluml Good condition	-	cal properly operating	g \Box Needs Maintenance \boxtimes N/A

2.	Extraction System Pipelines, Valves, Valve Boxes, and Other AppurtenancesGood conditionInseeds MaintenanceRemarks: N/AInseeds Maintenance
3.	Spare Parts and Equipment □ Readily available □ Good condition □ Requires upgrade □ Needs to be provided Remarks: N/A
B. Su	rface Water Collection Structures, Pumps, and Pipelines 🛛 Applicable 🖾 N/A
1.	Collection Structures, Pumps, and ElectricalGood conditionNeeds MaintenanceRemarks: N/A
2.	Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other Appurtenances Good condition Needs Maintenance Remarks: N/A
3.	Spare Parts and Equipment □ Readily available □ Good condition □ Requires upgrade □ Needs to be provided Remarks: N/A
C. Tr	eatment System
1.	Treatment Train (Check components that apply) Bioremediation Metals removal Oil/water separation Bioremediation Air stripping Carbon adsorbers Bioremediation Filters - Additive (e.g., chelation agent, flocculent) - Others - Others - Good condition Needs Maintenance Sampling ports properly marked and functional Sampling/maintenance log displayed and up to date Equipment properly identified Uauntity of groundwater treated annually - Quantity of surface water treated annually - Remarks: N/A
2.	Electrical Enclosures and Panels (properly rated and functional) ⊠ N/A □ Good condition □ Needs Maintenance Remarks: □ □
3.	Tanks, Vaults, Storage Vessels⊠ N/A□ Good condition□ Proper secondary containment□ Needs MaintenanceRemarks:
4.	Discharge Structure and Appurtenances ⊠ N/A □ Good condition □ Needs Maintenance Remarks: □ □

5.	Treatment Building(s) ⊠ N/A □ Good condition (esp. roof an □ Chemicals and equipment properly stored Remarks:	nd doorways) 🗌 Nee	eds repair
6.	Monitoring Wells (pump and treatment remedy) Properly secured/locked All required wells located Needs Marks: 	ng \Box Routinely sampled	□ Good condition ⊠ N/A
D. M	onitoring Data		
1.	Monitoring Data Is routinely submitted on time	⊠ Is of acceptable quality	
2.	Monitoring data suggests: ⊠ Groundwater plume is effectively contained	☐ Contaminant concentration Arsenic, manganese, and naph declining in all wells.	e
E. M	onitored Natural Attenuation		
1.	Monitoring Wells (natural attenuation remedy)☑ Properly secured/locked□ Functionin☑ All required wells located☑ Needs MaRemarks: All required FFTA area wells found anof having rusty well casings. Well casing mainteFFTA-MW101S and 14-MW001 casing lids detecasing lid is missing and well is missing a well plant colony they should be removed.	aintenance ad accessed. Wells are in good enance (i.e., painting) will be re eriorated, rusty, and should be r	equired in the future. replaced. 14-MW002
	X. OTHER F	REMEDIES	
	If there are remedies applied at the site which are no the physical nature and condition of any facility ass vapor extraction.		
	N/A		

	XI. OVERALL OBSERVATIONS			
А.	Implementation of the Remedy			
	Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).			
	The selected remedy at FFTA is in situ biological treatment (biostimulation), institutional controls, and monitoring. The remedy is intended to reduce COC concentrations in the contaminant plume, and to prevent exposure until cleanup levels are met. The in situ biological treatment component was accomplished with a pilot study. The biostimulation substrate successfully reduced the concentration of most organics in the plume area sufficiently such that EPA and VDEQ concurred full in situ implementation of the biostimulation component of the remedy was not necessary. Groundwater monitoring and institutional controls will continue until cleanup levels are met for all COCs.			
	Compared to the site conditions prior to the biostimulation injection in 2009, the maximum concentrations of benzene, 4-methyphenol, naphthalene, and manganese have decreased and the contaminant plumes have decreased in size. Only arsenic, manganese, and naphthalene exceed cleanup goals. Arsenic and manganese seem to be stable both in concentration and areal extent.			
B.	Adequacy of O&M			
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.			
	No issues. LTM Program is evaluated and updated regularly by NASA and the regulators based on LTM data.			
C.	Early Indicators of Potential Remedy Problems			
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs, that suggest that the protectiveness of the remedy may be compromised in the future.			
	No issues or observations suggest the remedy protectiveness will be compromised.			
D.	Opportunities for Optimization			
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.			
	As discussed in LTM evaluation reports and determined by NASA with regulator concurrence, some monitoring wells and/or analytes were removed from the LTM program since cleanup levels were reached. No further optimization opportunities identified.			

Site Inspection Checklist

I. SITE INFORMATION				
Site name: NASA Wallops Flight Facility (WFF)Date of inspection: May 17, 2023Waste Oil Dump (WOD)Date of inspection: May 17, 2023				
Location and Region: Wallops Island, Virginia EPA Region 3	EPA ID: VA8800010763			
Agency, office, or company leading the five-year review: NASA	Weather/temperature: Partly Cloudy / 74°F			
Remedy Includes: (Check all that apply): Image: Monitored natural attenuation Image: Landfill cover/containment Image: Monitored natural attenuation Image: Access controls Image: Groundwater containment Image: Institutional controls Image: Vertical barrier walls Image: Groundwater pump and treatment Image: Surface water collection and treatment Image: Other - In-Situ Biological Treatment Image: Surface water collection and treatment				
Attachments: 🛛 Photo Log 🗌 Site map	attached			
II. INTERVIEWS	(Check all that apply):			
 O&M site manager: David Liu NAS Name Interviewed □ at site □ at office ⊠ by phone/email Email: david.liu-1@nasa.gov Problems, suggestions; ⊠ Report attached - [See Five 				
2. O&M staff: N/A Name Interviewed □ at site □ at office □ by phone/email Problems, suggestions; □ Report attached -	Title Date Phone No.:			
 3. Local regulatory authorities and response agencies (i.e., State and Tribal offices, emergency response office, police department, office of public health or environmental health, zoning office, recorder of deeds, or other city and county offices, etc.). Fill in all that apply: Agency: U.S. Environmental Protection Agency (EPA) Contact: Lorie Baker Project Manager [Questionnaire] Mame Title Date Phone No.: Email: Baker.Lori@epa.gov Problems; suggestions; ⊠ Report attached - [See Five-Year Review Interview Questionnaire] 				
Agency: Virginia Department of Environmental Qual: Contact: Kyle Newman Project Manager Name Title Email: kyle.newman@deq.virginia.gov Problems; suggestions; ⊠ Report attached - [See Five 4. Other interviews (optional) □ Report attached -	[Questionnaire] (804) 659-1322 Date Phone No.:			

	III. ON-SITE DOCUMENTS & RECORDS VERIFIED (Check all that apply):				
1.	O&M Documents ☑ O&M manual □ As-built drawings □ Maintenance logs Remarks: Long-Term Monitoring Plan for g	 Readily available Readily available Readily available groundwater and LUC Rem 	 ☑ Up to date □ Up to date □ Up to date □ Up to date edial Design avai 	□ N/A ⊠ N/A ⊠ N/A lable.	
2.	Site-Specific Health and Safety Plan Contingency plan/emergency response p Remarks:	□ Readily available lan □ Readily available	☑ Up to date □ Up to date	□ N/A ⊠ N/A	
3.	O&M and OSHA Training Records Remarks:	□ Readily available	□ Up to date	⊠ N/A	
4.	Permits and Service Agreements Air discharge permit Effluent discharge Waste disposal, POTW Other permits - Remarks: 	 □ Readily available □ Readily available ⊠ Readily available □ Readily available 	□ Up to date □ Up to date □ Up to date □ Up to date □ Up to date	⊠ N/A ⊠ N/A ⊠ N/A ⊠ N/A	
5.	Gas Generation Records \Box ReadRemarks:	ily available 🛛 Up to	o date 🛛 N/A		
6.	Settlement Monument Records Remarks:	□ Readily available	□ Up to date	⊠ N/A	
7.	Groundwater Monitoring Records Remarks: Provided to regulators upon issue	Readily available and maintained by NASA.	⊠ Up to date	□ N/A	
8.	Leachate Extraction Records Remarks:	□ Readily available	□ Up to date	⊠ N/A	
9.	 Discharge Compliance Records □ Air □ Water (effluent) Remarks: 	 □ Readily available □ Readily available 	□ Up to date □ Up to date	⊠ N/A ⊠ N/A	
10.	Daily Access/Security Logs Remarks:	□ Readily available	\Box Up to date	X/A	

			IV. O&M COSTS	
1.	O&M Organiza □ State in-house □ PRP in-house ⊠ Federal Facili □ Other -	2	 □ Contractor for State □ Contractor for PRP ⊠ Contractor for Feder 	,
2.	O&M Cost Reco □ Readily availa □ Funding mech Original O&M co	able D Up nanism/agreeme ost estimate -	-	□ Breakdown attached
	1	otal annual cos	t by year for review period	d if available
	From	То		□ Breakdown attached
	Date	Date	Total cost	
	From	_To	Total cost	Breakdown attached
	Date From	Date To	I otal cost	□ Breakdown attached
	Date	_ 10 Date	Total cost	
	From	_То		□ Breakdown attached
	Date	Date	Total cost	
	From Date	_ To Date	Total cost	_ Breakdown attached
3.				
	V. ACC	ESS AND INS	TITUTIONAL CONTR	OLS ⊠ Applicable □ N/A
A. Fe	ncing			
1.	Fencing damage Remarks: No fen		cation shown on site map site. Facility boundary is	
B. Ot	her Access Restric	tions		
1.	Signs and other Remarks: Site is are restricted and	located within t		shown on site map \boxtimes N/A perty of NASA WFF; facility and site access

C. In	stitutional Controls (ICs)
1.	Implementation and enforcementSite conditions imply ICs not properly implemented □ Yes No □ N/A Site conditions imply ICs not being fully enforced □ Yes No N/A
	Type of monitoring (e.g., self-reporting, drive by): Drive by / Site walk with self-reporting.Annual inspections: Inspected during each groundwater monitoring eventResponsible party/agency: NASW WFF prime [on-site] contractor, Bluestone Environmental Group.Contact: Susan DunnEnvironmental Scientist05/17/2023(757) 824-1832NameTitleDatePhone No.:
	Reporting is up-to-date \boxtimes Yes \square No \square N/AReports are verified by the lead agency \boxtimes Yes \square No \square N/A
	Specific requirements indeed or decision documents have been metImage: YesNoN/AViolations have been reportedImage: YesNoN/AOther problems or suggestions:Image: Report attached -Image: NoImage: No
2.	Adequacy □ ICs are adequate □ ICs are inadequate □ N/A Remarks: Site is located within the controlled federal property of NASA WFF; facility and site access are restricted. Groundwater at the site is not used or accessed, other than for environmental monitoring. □ N/A
D. G	eneral
1.	Vandalism/trespassing \Box Location shown on site map \boxtimes No vandalism evident Remarks:
2.	Land use changes on site \Box N/A Remarks: Land use has not changed since the last FYR event on July 10, 2018.
3.	Land use changes off site N/A Remarks: None observed or reported
	VI. GENERAL SITE CONDITIONS
A. R	oads \Box Applicable \boxtimes N/A
1.	Roads damaged Location shown on site map Roads adequate N/A Remarks: No paved roads present at WOD. Runway 17-35 is adjacent but is maintained by the facility. A dirt road is present at WOD that leads to a facility perimeter gate (Gate 11). The road was observed to be in good condition.
B. O	ther Site Conditions
	Remarks: Vegetation observed encroaching WOD area wells 15-MW007, WOD-MW003, and WOD-MW006. Vegetation should be cleared/trimmed back prior to future inspection and/or sampling events.

VII. LANDFILL COVERS				
A. La	A. Landfill Surface			
1.	Settlement - (Low spots) Areal extent: Remarks: N/A	□ Location shown on site map Depth:	□ Settlement not evident	
2.	Cracks Lengths: Remarks: N/A	☐ Location shown on site map Widths:	☐ Cracking not evident Depths:	
3.	Erosion Areal extent: Remarks: N/A	□ Location shown on site map Depth:	□ Erosion not evident	
4.	Holes Areal extent: Remarks: N/A	□ Location shown on site map Depth:	□ Holes not evident	
5.	Vegetative Cover □ Gra □ Trees/Shrubs (indicate size and Remarks: N/A	1 1 2	lished □ No signs of stress	
6.	Alternative Cover (armored roc Remarks: N/A	rk, concrete, etc.) ⊠ N/A		
7.	Bulges Areal extent: Remarks: N/A	□ Location shown on site map Height:	□ Bulges not evident	
8.	Wet Areas/Water Damage	□ Wet areas/water damage not e	evident	
	\Box Wet areas	\Box Location shown on site map	Areal extent:	
	\square Ponding	\Box Location shown on site map	Areal extent:	
		\Box Location shown on site map	Areal extent:	
	□ Soft subgrade Remarks: N/A	\Box Location shown on site map	Areal extent:	
9.	Slope Instability□ SlidesAreal extent:Remarks: N/A	□ Location shown on site map	⊠ No evidence of slope instability	
B. Bei	(Horizontally constructed mounds	⊠ N/A s of earth placed across a steep land v of surface runoff and intercept and		
1.	Flows Bypass Bench Remarks:	\Box Location shown on site map	⊠ N/A or okay	

2.	Bench Breached Remarks:	\Box Location shown on site map \boxtimes N/A or okay		
3.	Bench Overtopped Remarks:	\Box Location shown on site map \boxtimes N/A or okay		
C. Let		ion control mats, riprap, grout bags, and/or gabions that descend down the steep and allow the runoff water collected by the benches to move off of the landfill		
1.	Settlement Areal extent: Remarks: N/A	\Box Location shown on site map \Box No evidence of settlement Depth:		
2.	Material Degradation Material type: Remarks: N/A	\Box Location shown on site map \Box No evidence of degradation Areal extent:		
3.	Erosion Areal extent: Remarks: N/A	\Box Location shown on site map \Box No evidence of erosion Depth:		
4.	Undercutting Areal extent: Remarks: N/A	\Box Location shown on site map \Box No evidence of undercutting Depth:		
5.	Obstructions Type: Location shown on sit Remarks: N/A	□ No obstructions the map Areal extent: Size:		
6.	Excessive Vegetative Growth Type: In No evidence of excessive growth In Vegetation in channels does not obstruct flow In Location shown on site map Areal extent: Remarks: N/A In Vegetation			
D. Co	D. Cover Penetrations \Box Applicable \boxtimes N/A			
1.	Gas Vents ☐ Properly secured/locke ☐ Evidence of leakage a Remarks:			
2.	Gas Monitoring Probes ☐ Properly secured/locked ☐ Evidence of leakage a Remarks:	ed \Box Functioning \Box Routinely sampled \Box Good condition		

3.	Monitoring Wells (within surfac Properly secured/locked Evidence of leakage at penetra Remarks:	□ Functioning	 □ Routinely sampled □ Needs Maintenance 	□ Good condition ⊠ N/A
4.	Leachate Extraction Wells Properly secured/locked Evidence of leakage at penetra Remarks:	☐ Functioning ation	 □ Routinely sampled □ Needs Maintenance 	□ Good condition ⊠ N/A
5.	Settlement Monuments Remarks:	□ Located	□ Routinely surveyed	⊠ N/A
Е.	Gas Collection and Treatment	□ Applicable	X/A	
1.	ε	ermal destruction eds Maintenance	□ Collection for reuse	
2.	Gas Collection Wells, Manifold □ Good condition □ Nea Remarks: N/A	Is and Piping reds Maintenance		
3.	Gas Monitoring Facilities (<i>e.g.</i> , ☐ Good condition ☐ Nea Remarks:	gas monitoring of a eds Maintenance	adjacent homes or buildings ⊠ N/A	;)
F. (Cover Drainage Layer	□ Applicable	⊠ N/A	
1.	Outlet Pipes Inspected Remarks:	□ Functioning	N/A	1
2.	Outlet Rock Inspected Remarks:	□ Functioning	🖾 N/A	
G.	Detention/Sedimentation Ponds	□ Applicable	⊠ N/A	
1.	Siltation Areal extent: ☐ Siltation not evident Remarks:	Depth:	⊠ N/A	
2.	Erosion Areal extent: ⊠ Erosion not evident Remarks:	Depth:		
3.	Outlet Works Remarks:	nctioning	⊠ N/A	

4.	Dam Remarks:	□ Functioning		⊠ N/A
Н.	Retaining Walls	□ Applicable	⊠ N/A	
1.	Deformations Horizontal displacement: Rotational displacement: Remarks: N/A	□ Location show	vn on site map Vertical displace	□ Deformation not evident ment:
2.	Degradation Remarks: N/A	□ Location show	vn on site map	□ Degradation not evident
I.	Perimeter Ditches/Off-Site Di	scharge	□ Applicable	⊠ N/A
1.	Siltation Areal extent: Remarks: N/A	ation shown on site Depth:	e map □ Siltat	tion not evident
2.	Vegetative Growth Vegetation does not in Areal extent: Remarks: N/A	□ Location show npede flow Type:	vn on site map	⊠ N/A
3.	Erosion Areal extent: Remarks: N/A	□ Location show Depth:	vn on site map	□ Erosion not evident
4.	Discharge Structure Remarks:	□ Functioning	⊠ N/A	
	VIII. VER	TICAL BARRIE	R WALLS	Applicable 🖾 N/A
1.	Settlement Areal extent: Remarks: N/A	□ Location show Depth:	vn on site map	□ Settlement not evident
2.	Performance Monitorin	g		
	Type of monitoring: Frequency: Head differential: Remarks: N/A			nce not monitored of breaching
	IX. GROUNDWATI	ER/SURFACE W	ATER REMEDI	ES 🛛 Applicable 🗌 N/A
A.	Groundwater Extraction We	lls, Pumps, and P	ipelines	\Box Applicable \boxtimes N/A
1.	Pumps, Wellhead Plum ☐ Good condition ☐ A Remarks:			\Box Needs Maintenance \boxtimes N/A

2.	Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances Good condition Investigation Remarks: N/A Investigation		
3.	Spare Parts and Equipment □ Readily available □ Good condition □ Requires upgrade □ Needs to be provided Remarks: N/A		
B. Su	rface Water Collection Structures, Pumps, and Pipelines 🛛 Applicable 🖾 N/A		
1.	Collection Structures, Pumps, and ElectricalGood conditionNeeds MaintenanceRemarks: N/A		
2.	Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other Appurtenances Good condition Needs Maintenance Remarks: N/A Needs Maintenance		
3.	Spare Parts and Equipment □ Readily available □ Good condition □ Requires upgrade □ Needs to be provided Remarks: N/A		
C. Tı	eatment System		
1.	Treatment Train (Check components that apply): Bioremediation Metals removal Oil/water separation Bioremediation Air stripping Carbon adsorbers Bioremediation Filters - Additive (e.g., chelation agent, flocculent) - Others - Good condition Needs Maintenance Sampling ports properly marked and functional Sampling/maintenance log displayed and up to date Equipment properly identified Quantity of groundwater treated annually - Quantity of surface water treated annually - Remarks: N/A Neads		
2.	Electrical Enclosures and Panels (properly rated and functional) N/A Good condition Needs Maintenance Remarks:		
3.	Tanks, Vaults, Storage Vessels⊠ N/A□ Good condition□ Proper secondary containment□ Needs MaintenanceRemarks:		
4.	Discharge Structure and Appurtenances⊠ N/A□ Good condition□ Needs MaintenanceRemarks:		

5.	Treatment Building(s) ⊠ N/A □ Good condition (esp. roof and doorways) □ Needs repair □ Chemicals and equipment properly stored Remarks:			
6.	Monitoring Wells (pump and treatment remedy) Properly secured/locked Functioning Routinely sampled Good condition All required wells located Needs Maintenance N/A Remarks:			
D. N	Ionitoring Data			
1.	Monitoring Data⊠ Is routinely submitted on time⊠ Is of acceptable quality			
2.	Monitoring data suggests: ⊠ Groundwater plume is effectively contained □ Contaminant concentrations are declining Arsenic COC is not declining in all wells.			
E. N	Monitored Natural Attenuation			
1.	Monitoring Wells (natural attenuation remedy)			
	X. OTHER REMEDIES			
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.			
	XI. OVERALL OBSERVATIONS			
А.	Implementation of the Remedy			
	Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).			
	The selected remedy at WOD includes in situ biological treatment (biostimulation), institutional controls, and monitoring of COCs. The remedy is intended to reduce COC concentrations in the contaminant plume, and to prevent exposure until cleanup levels are met. The in situ biological treatment component was accomplished with a pilot study and full-scale injection. Groundwater monitoring and institutional controls will continue until cleanup levels are met.			
	Benzene was removed from the LTM program in 2014 after concentrations were below the cleanup level during several consecutive LTM events. Only arsenic exceeds the cleanup goal; however, this is isolated to an area on the western boundary of the site. LTM continues.			

Adequacy of O&M	
Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.	
No issues. LTM Program is evaluated and updated regularly by NASA and the regulators based on LTM data.	
Early Indicators of Potential Remedy Problems	
Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs, that suggest that the protectiveness of the remedy may be compromised in the future. No issues or observations suggest the remedy protectiveness will be compromised.	
Opportunities for Optimization	
Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.	
As discussed in LTM evaluation reports and determined by NASA with regulator concurrence, some monitoring wells and/or analytes were removed from the LTM program since cleanup levels were reached. No further optimization opportunities identified.	

Facility:	NASA Wallops Flight Facility, Wallops Island, Virginia
EPA ID:	VA8800010763
Five-Year Review No.:	Five-Year Review No. 3 (Third); Year 2023
Site(s):	 Former Fire Training Area (FFTA) Waste Oil Dump (WOD)
Format:	Questionnaire / Email
Interviewee:	Kyle Newman
Agency/Title/etc:	VDEQ, Remedial Project Manager
Date:	6/13/23

Background

1. Are you aware of any efforts by NASA to solicit or engage input and concerns from the Public? If so, please describe these efforts.

Yes. NASA conducts regular community outreach events both for facility employees and the community. NASA also engages with local officials and follows statutory requirements for soliciting public comment on CERCLA documents, including this review.

2. What effects have site operations had on the surrounding community or area?

PFAS contamination from the facility (not this site) has previously impacted drinking water supplies to the town of Chincoteague, resulting in the installation of a pump and treat system and changes to the production well configuration. However, activities related to the sites in question have not had an impact on the community.

3. Are you aware of any community concerns regarding the site or its operation and administration? If so, please give details.

There are some limited concerns about PFAS and other contamination within the community, but overall there appears to be confidence in NASA's efforts to remedy the issue. There do not appear concerns regarding the specific site in question.

4. Are you aware of any events, incidents, or activities at the site such as vandalism, trespassing, or emergency responses from local authorities? If so, give details.

A Navy jet had an incident on the runway last year that required the use of AAAF foam and resulted in another release of PFAS. Investigations are ongoing, but do not appear

to have involved emergency responses from authorities since treatment systems have been put in place to protect local water supplies.

5. Are you aware of any intrusive activities being conducted at the site or uses of the site other than monitoring or maintenance?

No.

6. Are you aware of any uses of the groundwater at or downgradient of the site?

Yes, it is used as a drinking water source by the town of Chincoteague.

State and Local Considerations (Regulatory)

1. Have there been routine communications or activities (site visits, inspections, reporting activities, etc.) conducted by your office regarding the site? If so, please give purpose and results.

The facility regularly coordinates with DEQ in the form of biweekly update calls, quarterly in-person meetings, and regular direct contact between NASA, DEQ, and EPA staff. These are not specifically related to the site, but provide the opportunity for updates as needed. A site visit has been conducted as part of a larger tour of CERCLA sites on the facility.

2. Have there been any complaints, violations, or other compliance issues related to the site requiring a response by your office? If so, please give details of the events and results of the responses.

None from the DEQ Office of Remediation Programs

3. Have there been any changes in regulations or cleanup levels since implementation that may impact the site?

PFAS remains an evolving challenge as the science, laws, and regulations shift over time, and may impact the site remedy.

Performance, Operation, and Maintenance Problems

1. Is the remedy functioning as intended by the decision documents? How well is the remedy performing?

Yes, all remedies in place appear to be functioning well and as intended. However, in the future it may need to be revised to address PFAS contamination.

2. Describe the Long-Term Monitoring (LTM) staff and activities. If there is not a continuous on-site presence, describe the staff and frequency of site inspections and activities.

Site groundwater is regularly monitored and reported to DEQ and EPA.

3. Have there been any significant changes in the LTM requirements, operational adjustments, maintenance schedules, or sampling routines since start up or in the last five years? If so, do they affect the protectiveness or effectiveness of the remedy? Please describe the changes and impacts.

There have been minor changes to LTM frequency, but future changes will likely be dependent on the results of the PFAS RI.

4. Do you have any comments or feedback on the adequacy of the implemented remedy? Are all the right constituents included? Is the monitoring frequency adequate?

The results of the PFAS investigation will determine the adequacy of the remedy for the site moving forward.

5. Do you have any comments, suggestions, or recommendations regarding the site's management or operation?

No further comments.

Facility:	NASA Wallops Flight Facility, Wallops Island, Virginia
EPA ID:	VA8800010763
Five-Year Review No.:	Five-Year Review No. 3 (Third); Year 2023
Site(s):	 Former Fire Training Area (FFTA) Waste Oil Dump (WOD)
Format:	Questionnaire / Email
Interviewee:	Lorie Baker
Agency/Title/etc:	US EPA Region 3/Project Manager
Date:	6/6/2023

Background

1. Are you aware of any efforts by NASA to solicit or engage input and concerns from the Public? If so, please describe these efforts. Yes. NASA published a public notice to alert the surrounding communities of the beginning of the Five-Year Review (FYR) process. If this wasn't done, it is also recommended that the tribes that have shown interest in the environmental work at WFF also be notified.

2. What effects have site operations had on the surrounding community or area? Generally, for the two OUs that are the subject of this FYR, cleanup actions and investigations that had occurred based on the RODs have not had an effect on the surrounding community.

3. Are you aware of any community concerns regarding the site or its operation and administration? If so, please give details. The main community concerns would be associated with PFAS contamination on WFF. Since the discovery of PFAS in public wells, there have been more community and employee concerns and more involvement with local stakeholders such as the Town of Chincoteague (TOC) and the local health department. NASA reacted quickly by constructing the treatment system for the TOC water wells that were contaminated with PFAS and the GAC system is operating well. It does not appear that the FFTA is a main source contributing to the TOC well contamination, but further investigation is ongoing.

4. Are you aware of any events, incidents, or activities at the site such as vandalism, trespassing, or emergency responses from local authorities? If so, give details. While not on the two sites, there was an incident nearby. On March 28, 2022, there was an intentional emergency release of approximately 200 gallons of AFFF concentrate applied to the runway at WFF as requested by the Navy Landing Safety Officer due to an unsafe nose gear condition on an incoming plane. The

release covered a large area (700 ft x 40 ft) and occurred in proximity to the TOC drinking water wells. NASA is performing an investigation of soils and groundwater in the area using Navy funding.

5. Are you aware of any intrusive activities being conducted at the site or uses of the site other than monitoring or maintenance? There have been and may be additional monitoring wells constructed in the FFTA and WOD area as part of the PFAS investigations. I am not aware of any other intrusive activities in this area.

6. Are you aware of any uses of the groundwater at or downgradient of the site? Both NASA and TOC have public drinking water wells on WFF. The NASA wells are not in close proximity to these two sites, and although the FFTA does not appear to be the source of the PFAS contamination in the TOC wells, the upcoming PFAS RI should help to determine the extent of the FFTA PFAS plume.

State and Local Considerations (Regulatory)

1. Have there been routine communications or activities (site visits, inspections, reporting activities, etc.) conducted by your office regarding the site? If so, please give purpose and results. This question is directed to the State. EPA has conducted no site visits/inspections/reporting activities to the best of my knowledge. As part of the CERCLA post-ROD long-term monitoring program, NASA provides EPA periodic monitoring reports.

2. Have there been any complaints, violations, or other compliance issues related to the site requiring a response by your office? If so, please give details of the events and results of the responses. **Not to my knowledge.**

3. Have there been any changes in regulations or cleanup levels since implementation that may impact the site? **PFAS should continue to be noted in the FYR as an emerging contaminant for the FFTA and will need to be addressed prior to closeout.** If it's been detected at the WOD monitoring wells, this should also be noted. Since the last FYR, EPA has developed Regional Screening Levels for PFOS and PFOA, along with a handful of other PFAS compounds. EPA has also proposed identifying PFOA and PFOS as CERCLA hazardous substances, in addition to proposing MCLs for these compounds.

Performance, Operation, and Maintenance Problems

1. Is the remedy functioning as intended by the decision documents? How well is the remedy performing? **Yes, the remedy is functioning as intended by the decision**

documents for the FFTA and WOD; however for the FFTA, the remedy will most likely need to be amended to include remediation of PFAS once the RI/FS is completed.

2. Describe the Long-Term Monitoring (LTM) staff and activities. If there is not a continuous on-site presence, describe the staff and frequency of site inspections and activities.

EPA is not involved with the LTM activities at these sites but receives and reviews LTM reports on a routine basis.

3. Have there been any significant changes in the LTM requirements, operational adjustments, maintenance schedules, or sampling routines since start up or in the last five years? If so, do they affect the protectiveness or effectiveness of the remedy? Please describe the changes and impacts.

Monitoring frequency and constituents continue to be under review as monitoring reports are received, and changes have been requested and approved. Additional changes will be made in the future based on monitoring results. The protectiveness/effectiveness of the remedy for the FFTA may need to continue to be deferred until the PFAS RI/FS is completed for this OU.

4. Do you have any comments or feedback on the adequacy of the implemented remedy? Are all the right constituents included? Is the monitoring frequency adequate? At the FFTA, further action may be necessary once the PFAS investigation is completed and/or cleanup levels or MCLs are established for PFAS compounds.

5. Do you have any comments, suggestions, or recommendations regarding the site's management or operation? The sites are well-managed by NASA. No further comments at this time.

Facility:	NASA Wallops Flight Facility, Wallops Island, Virginia
EPA ID:	VA8800010763
Five-Year Review No.:	Five-Year Review No. 3 (Third); Year 2023
Site(s):	 Former Fire Training Area (FFTA) Waste Oil Dump (WOD)
Format:	Questionnaire / Email
Interviewee:	David Liu
Agency/Title/etc:	NASA/Restoration Program Manager
Date:	6/13/2023

Background

1. Are you aware of any efforts by NASA to solicit or engage input and concerns from the Public? If so, please describe these efforts.

NASA published a public notice announcing the start of this Five-Year Review. In the past five years, NASA has routinely hosted public information sessions at the WFF Visitor Center and employee outreach sessions at the cafeteria to provide updates on our PFAS activities and answer questions from the community and employees. NASA has also published public notices to solicit public comments on two Proposed Cleanup Plans and an Engineering Evaluation and Cost Analysis for three FUDS projects and was present at the public information sessions.

2. What effects have site operations had on the surrounding community or area?

LTM operations at the FFTA and WOD have not affected the surrounding community or area.

3. Are you aware of any community concerns regarding the site or its operation and administration? If so, please give details.

I am not aware of any community concerns regarding these sites. As indicated above, NASA has been engaging our employees and the public on our activities related to PFAS.

4. Are you aware of any events, incidents, or activities at the site such as vandalism, trespassing, or emergency responses from local authorities? If so, give details.

I am not aware of anything of this nature at the FFTA and WOD.

5. Are you aware of any intrusive activities being conducted at the site or uses of the site other than monitoring or maintenance?

No intrusive activities have been conducted at the two sites other than monitoring and maintenance.

6. Are you aware of any uses of the groundwater at or downgradient of the site?

Land use controls are in place to prevent groundwater use at the FFTA and WOD. The Town of Chincoteague and Trails End have drinking water wells in the surficial aquifer. None of the wells are downgradient of the FFTA or WOD.

State and Local Considerations (Regulatory)

1. Have there been routine communications or activities (site visits, inspections, reporting activities, etc.) conducted by your office regarding the site? If so, please give purpose and results.

NASA conducts routine long term monitoring activities and provides reports to EPA and VDEQ.

2. Have there been any complaints, violations, or other compliance issues related to the site requiring a response by your office? If so, please give details of the events and results of the responses.

None that I am aware of.

3. Have there been any changes in regulations or cleanup levels since implementation that may impact the site?

Yes. EPA has developed Regional Screening Levels (RSLs) for 8 PFAS compounds, is proposing to develop Maximum Contaminant Levels for 6 compounds, and list PFOA and PFOS as hazardous substances. PFAS is present at both the FFTA and WOD above RSLs.

Performance, Operation, and Maintenance Problems

1. Is the remedy functioning as intended by the decision documents? How well is the remedy performing?

Yes, the remedy is function as intended. The remedy would have to be amended to include PFAS in the future.

2. Describe the Long-Term Monitoring (LTM) staff and activities. If there is not a continuous on-site presence, describe the staff and frequency of site inspections and activities.

LTM activities at the FFTA are conducted at a frequency of once every 15 months by an off-site contractor. LTM activities at the WOD are conducted at a frequency of once every 30 months by an on-site contractor.

3. Have there been any significant changes in the LTM requirements, operational adjustments, maintenance schedules, or sampling routines since start up or in the last five years? If so, do they affect the protectiveness or effectiveness of the remedy? Please describe the changes and impacts.

The FFTA LTM Plan Revision 4 was completed in September 2022. The sampling frequency is once every 15 months at seven monitoring wells for three contaminants of concern – naphthalene, arsenic, and manganese. Benzene and 4-methylphenol met the cleanup criteria set forth in the ROD since the last Five-Year Review.

The WOD LTM Plan Revision 4 was completed in August 2022. The sampling frequency is once every 30 months at three monitoring wells for one contaminant of concern – arsenic.

4. Do you have any comments or feedback on the adequacy of the implemented remedy? Are all the right constituents included? Is the monitoring frequency adequate?

The monitoring frequency is adequate for the LTM constituents. PFAS is being investigated separately.

5. Do you have any comments, suggestions, or recommendations regarding the site's management or operation?

No.

This page intentionally left blank