Elastocaloric Refrigeration for Spaceflight Applications (ERSA)

PI: Prof. Jun Cui, Iowa State University
Co-I/Inst.-PI: Prof. Duane Johnson, Iowa State University, Dr. Douglas Nicholson, Boeing Company, Dr. Frederick Calkins, Boeing Company

Approach:
Elastocaloric Materials:
- DFT calculation and prediction of latent heat
- High throughput materials synthesis & screening
- Machine learning data analysis and prediction
- Conventional alloy synthesis & characterization for validation and scaleup
- Validation in an elastocaloric test-bed

Elastocaloric Radiator:
- Explore spaceflight applications and define system specification
- Conceptual system design (SOLIDWORK)
- Component demonstration

Research Objectives
To accomplish:
- Identify new elastocaloric materials suitable for spaceflight refrigeration application
- Design elastocaloric space radiator and demonstrate key components
- Identify other suitable spaceflight applications

Innovation:
- High throughput mat’s development methodology
- On-demand passive/active hybrid cooling

Potential Impact
An efficient and safe elastocaloric refrigeration technology will benefit several spaceflight applications such as life support, crew health/performance, geological/biological sample preservations, cryogenic fluid management, instrument thermal management and thermal control system radiator

Other benefits and outcomes:
- Establish a methodology effective for developing a wide range of metals and ceramics.
- Add a large data set to NASA’s Shape Memory Materials Database

Compare to SOA:
- More powerful, reliable materials
- Robust space radiator
- TRL: 1 ➩ 3