Metamaterial particles for orbital environment remediation

PI: Davide Guzzetti *Auburn University*

Collaborators:

Akhil Rao *Middlebury College* Byron Farnum, Russell Mailen, and Brian Thurow *Auburn University*

Approach

PMPEs. By engineering geometry, optical, and thermal property variations of each constituent particle in relation to environment variations we can manifest a collective dust cloud

movement and behavior beyond what is achievable with natural deorbiting and diffusion.

Objective 1. Multi-physics ADR simulations will be realized by integrating standard models. Probabilistic continuum dynamics simulations are planned for large-scale, long-horizon predictions.

Objective 2. Space environment tests will be conducted on candidate or representative metamaterials for PMPEs.

Objective 3. Formulation will be integrated with educational activities on campus.

Goal: Devise programmable metamaterial particulate ensembles (PMPEs) for active debris removal (ADR) of the debris < 1 cm.

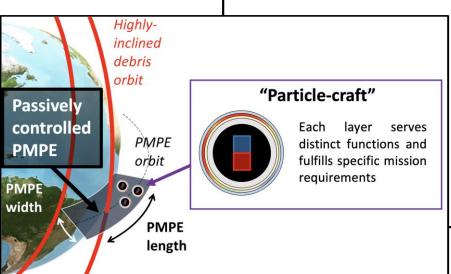
Objective 1. Derive PMPEs design principles and demonstrate PMPEs technical performance measures (TPMs) across relevant ADR scenarios.

Objective 2. Measure the survivability of key metamaterial properties to selected space environments effects.

Objective 3. Initiate the formulation of a technology demonstration payload.

Exit TRL 3 by demonstrating critical functions

Potential impact


Target debris population. < 1cm.

Mission duration. Mission duration may range from a few months to a few years, depending on PMPE mass.

Debris removed in one year. Cloud size and mass influence the number of debris removed. Many configurations are available with existing or planned launch vehicles.

Cost. Cost-benefit analysis is included in the design of PMPEs configurations.

Scenarios. PMPEs may be amenable for environment stabilization (as a distributed sweeper), responding to a rapidly unfolding breakups (by reducing launch vehicle interface requirements), recovering from a space conflict (by scaling to cover larger areas), and preventing care (as coatings).

Left: PMPE operating as an equatorial sweeper to clean highly inclined orbits. Right: Conceptual design of a metamaterial particle constituting the PMPE.