

Mars Missions Are Different

Mars is much farther than the Moon

	Closest Approach to Earth	Farthest Distance from Earth	Typical Round-Trip "Odometer" Reading
	$360,000 \mathrm{~km}$	$405,000 \mathrm{~km}$	$2,000,000 \mathrm{~km}$
Moon	$54,600,000 \mathrm{~km}$	$400,000,000 \mathrm{~km}$	$2,000,000,000 \mathrm{~km}$
Mars	54,60		

Mars gravity well is "deeper" than that of the Moon

- Gravity wells help visualize gravitational pull
- Mars's gravitational pull is stronger than that of the Moon, requiring more energy to escape

Mars mission is unlike anything we've ever done for human spaceflight

International Space Station

Typical Roundtrip Transit Time

ISS	Hours-Days
Moon	Days-Weeks
Mars	Years

Example Mission Trajectory

Example 850-Day Earth-Mars-Earth Trajectory for 2039 Mission Opportunity

Total Distance Traveled $1,772,051,938 \mathrm{~km}$
Total Distance Traveled 11.84 AU
Longest Roundtrip Comm Delay 43.51 minutes

Longest Roundtrip Comm Delay 43.51 minutes
Outbound Segment Duration 279 days
Mars Stay Duration 51 days
Inbound Segment Duration 519 days
Total Interplanetary Duration 850 days

Example 982-Day Earth-Mars-Earth Trajectory for 2039 Mission Opportunity

> | Total Distance Traveled | $2,148,373,298 \mathrm{~km}$ |
| :--- | :--- |
| Total Distance Traveled | 14.36 AU |
| Longest Roundtrip Comm Delay | 41.19 minutes |

https://go.nasa.gov/3UR60ON

Outbound Segment Duration 337 days
Mars Stay Duration 348 days
Inbound Segment Duration 295 days Total Interplanetary Duration 982 days

Communication Challenges

Solar Conjunction Causing Communications Disruption

Example 850-day Roundtrip Mission

Need a new paradigm on HOW we communicate with crew

How to Get to the Surface?

	Viking 1\&2	Pathfinder		Phoenix	Curiosity	InSight	Perseverance	Human Class Lander Concept
Diameter (m)	3.505	2.65	2.65	2.65	4.5	2.65	4.5	16-19
Entry Mass (kg)	930	585	840	602	3,151	606	3,369	47,000-65,000
Landed Mass (kg)	603	360	539	364	899	375	1,026	36,000-40,000
Steady Progression of "in family" Entry, Descent, Landing								
			Upcoming ACR24 White Paper					
								Alternate Mid-L/

New paradigm needed for Human Class Landers

Getting Back Off the Surface

- Earth III 100's human launches
- Significant in-person ground support
- Generous delay/abort capability
- Moon $\square 6$ human launches
- Vehicle is delivered with crew prepared for ascent
- Real-time ground support via coms
- Mars \| 0 launches
- Little to no margin for delays
- Little to no real-time ground support
- Vehicle likely arrives unprepared for launch

Humans have ascended from only two celestial bodies to date, usually with significant support

Mission Abort Example

Example: Hybrid Mars Abort on Mission Day 30 During 850-Days Roundtrip Mission

What Does Mission Abort Mean?

New paradigm needed for risk buy-down and contingency planning

A Mass-ive Challenge

White Papers

