Use of Nail Puncture Tests and Internal Temperature Sensors for Simulation of Abusive Damage During Operation in Li-ion Batteries

Presenter: Casey Jones¹

Meghana Sudarshan¹ Alexey Serov¹ Narmadha Balraj¹ Thomas E. Adams² Vikas Tomar¹

¹School of Aeronautics and Astronautics Engineering, Purdue University ²Naval Surface Warfare Center, Crane Division, Crane, IN

NEPTUNE CENTER FOR POWER AND ENERGY RESEARCH

Background and Safety Concerns

- Lithium-ion batteries are becoming predominantly used in many applications
- Many safety concerns during operation, especially in abusive environments
 - UAVs, AUVs, EVs, satellites, etc.
- Examples of accidents during operation
 - Samsung Galaxy, Tesla, Boeing 787

https://news.softpedia.com/news/samsung-galaxy-s7-edge-catches-fire-while-charging-507925.shtml#sgal_1

https://www.cnn.com/interactive/2019/03/business/tesla-history-timeline/index.html

https://www.npr.org/2013/01/25/170231466/boeings-787-problems-remain-a-mystery

Objective of Testing

- Improved analysis
 - Monitoring of internal and external temperatures provides more information
- Extension of testing standards
 - Many verifications from testing standards employ use of go/nogo determination on integrity of cells under test
 - Cycling of cells during and after abuse gives more information on effects during operation

School of

Purdue Safety Map © Interfacial Multiphysics Laboratory Purdue University, 2020

- LCO coin cells constructed with RTD-embedded spacers
 - 4 cells with varying cathode diameters
 - 9.5 mm
 - 12.5 mm
 - 14.9 mm
 - 15.6 mm
 - External short circuit for 24 hours in accordance with NAVSEA 9310
 - Temperature data obtained with internal and external sensors

Li, B. et al., 2019, "Lithium-ion Battery Thermal Safety by Early Internal Detection, Prediction, and Prevention," Scientific Reports.

- Results
 - Larger amount of active material results in higher peak temperature
 - Increased difference between internal and external change in temperature
 - Decreased length in time to detect t90 (time to reach 90% of temperature change)
 - Improved detection time ratio with increased amount of active material

School of

Li, B. et al., 2019, "Lithium-ion Battery Thermal Safety by Early Internal Detection, Prediction, and Prevention," Scientific Reports.

- Overcharge of pouch cells
 - 2 cells each constructed with a substrate containing an internal RTD placed near the electrode terminal where highest temperature is expected
 - Cells used NMC cathodes with RTDs underneath the electrode stacks facing the current collector of the anode
 - One cell included an internal volume for gas accumulation to test effect of increased internal pressure

Li, B. et al., 2021, "Operando Monitoring of Electrode Temperatures During Overcharge-Caused Thermal Runaway," Energy Technology.

- 1 C overcharge results (with gas accumulation volume)
 - Minimal difference between internal and external cell temperatures until increase in Crate
 - Increased pressure from gas accumulation leads to higher thermal resistance and slower response of external sensor
 - Abrupt increase in surface temperature due mostly to combustion of cell

- 5 C overcharge results (with no gas accumulation volume)
 - Higher difference between internal and external temperatures at beginning due to higher current
 - Explosion and combustion occurred much sooner due to less gas accumulation during overcharge
 - Less material was released during explosion due to low pressure at time of rupture

Li, B. et al., 2021, "Operando Monitoring of Electrode Temperatures During Overcharge-Caused Thermal Runaway," Energy Technology.

Nail Punctures

LCO prismatic cells

- Allow cells to cycle normally for approximately 24 hours to obtain initial performance data
- Partial nail puncture on cycling cells with nail removed immediately and continued operation afterwards
- Investigate response and decreased performance due to physically damaged electrodes and exposure to atmosphere

Jones, C. et al., 2021, "Determining the Effects of Non-Catastrophic Nail Puncture on the Operational Performance and Service Life of Small Soft Case Commercial Li-ion Prismatic Cells," eTransportation.

Interfacial Multiphysics Lab (https://www.interfacialmultiphysics.com/)

Nail Punctures

Results

- Nail puncture causes an initial spike in temperature, and slightly higher operating temperatures afterwards
- Coulombic efficiencies initially drop due to higher charge capacities from increased operating temperatures
- Cells experience accelerated degradation due to loss of material and exposure to atmosphere after nail puncture

Jones, C. et al., 2021, "Determining the Effects of Non-Catastrophic Nail Puncture on the Operational Performance and Service Life of Small Soft Case Commercial Li-ion Prismatic Cells," eTransportation.

URDUE School of Aeronautics & Astronautics

Use of Commercial Cells

- 18650 RTD insertion
 - Perform characterization tests and discharge to 3.0 V
 - Cut around top of cell until gasket is reached
 - Transfer cells into glovebox with inert atmosphere
 - Remove top of cell and widen interior opening of electrodes
 - Insert RTD into middle of cell and close top of cell
 - Seal top of cell with epoxy
 - Reperform characterization tests

Use of Commercial Cells

- Methods of testing
 - Normal cycling
 - Individual cells
 - Battery packs
 - Comparison of internal and external temperatures during operation
 - Temperature distribution of cells operating in battery packs
 - Nail punctures
 - Cells are tested at differing SOC and have different amounts of aging at time of puncture
 - Investigation into difference in internal and external temperatures and rates of temperature change

12

Use of Commercial Cells

Summary

- Internal sensors provide improved indication of temperature response and can detect thermal runaway sooner than external sensors
- Abusive tests that allow cells to continue cycling afterwards provide valuable operational information that can lead to improvements in design and implementation
- Methods of inserting sensors into commercially available cells are being continuously improved for enhanced capabilities of monitoring internal temperatures

Acknowledgements

- Office of Naval Research, Program N00014-18-1-2397
- Dr. Michele Anderson, Program Manager

- Office of Naval Research

- Dr. Vikas Tomar and Bing Li
 - Interfacial Multiphysics Laboratory, Purdue University
- Dr. Vilas Pol, Dhanya Puthusseri, Mihit Parekh, and Daniel Gribble
 - ViPER Laboratory, Purdue University
- Dr. James Fleetwood, Rodney Kidd, Cara Fagerholm, and Teresa Hoskins
 - The Battery Innovation Center, Crane, IN

Lab/Contact Information

- Interfacial Multiphysics Laboratory
 - www.interfacialmultiphysics.com
- Casey Jones
 - jone1807@purdue.edu
- Dr. Vikas Tomar
 - tomar@purdue.edu

Questions?

