Triggering Thermal Runaway in Lithium Ion Cells using Laser Radiation - Latest Findings

By

John Jacob Darst, NASA JSC EP5

With

Jason Graika, NASA JSC EP6 Angad Mehrotra, NASA JSC EP5 Eric Dimpault-Darcy, NASA JSC EP5

Agenda

- Intro Why Laser
- Operating Principle
- Video 50W laser run
- FY19 Objective
- Test Method
- Test Hardware
- Results
- Lessons Learned
- Future Work

Intro – Why Laser

- Laser initiation offers a new way to induce thermal runaway via heating, and has compelling advantages over traditional patch or other contact heaters.
 - Contactless, lower bias to results
 - Highly repeatable energy input
 - No hand labor to create heaters
 - Less modification to battery bricks to include trigger
 - Able to travel through fiber cables into sealed enclosures
 - Extremely high flux capability

Operating Principle

- A beam-absorbing coating is put onto the cell can that transfers incident beam energy into and through the cell can wall, locally heating outer wind of electrode and separator, creating a local short.
- High flux allows beam energy to overcome losses due to conduction away from target through the cell can, convective losses to circulating electrolyte.
- If the correct flux is determined, wattage can be dropped as low as possible in order to reduce total energy into the cell, producing a more realistic thermal runaway.
- Less input power means less overall temperature, allowing the cell can to remain strong, causing failure mode to closely resemble field failure.

Video - 50 W Laser Run 1 – 6 Second TR

FY19 Objective

- This work has been ongoing for a few years now.
- New, highly repeatable test rig to improve test rigor
- Very high throughput to give statistical significance to data
- First effort to determine Ideal flux curve and "regions of increasing stability"

Test Method

- For the scope of our initial assessment, we keep static:
 - Cell size, model, and chemistry •
 - Cell can material
 - Thermal losses
 - Can orientation
 - Coating type
- We vary:
 - Beam Target Area
 - **Beam Wattage**
 - **Beam Target Location**
- We determine:
 - Regions of increasing stability
 - Ideal flux curve

Laser

Select a cell type, coating, and target location

Maintain an area, and run from low to high wattage to determine upper and lower bounds for each region before moving to next area.

7

Test Hardware 1

Test Stand Exterior

- 316 stainless enclosure framed with 8020, gasket sealed and light impermeable.
- HEPA filtered powered air evacuation can clear the chamber in ~3 minutes

- Fully adjustable panel lighting
- Remote access camera for viewing
- Interior coated to prevent light scatter
- Beam Reflection guard
- Cooling fan to reduce post test temp for fast turnaround

Test Hardware 2

Lens Enclosure

 Moveable lens enclosure with continuous adjustment and locking to fix focal distance, with dust shroud and sacrificial front lens

- Three degree of freedom cell holding fixture allows for beam targeting
- Quick release clamps enable fast test article change

9

Results

Target Wattage (W)	Actual Wattage (W)	Dome %	Breach %	Average time to TR (s)	Standard Deviation (s)	Min (s)	Max (s)
40	37.8	60	20	78	51.83	15	160
50	48.2	80	40	24.6	27.81	6	80
60	57.6	100	20	17.8	8.77	5	28
70	67.3	100	100	16.2	12.93	8	42

- Total of 20 tests run for initial checkout, 5 at each wattage.
- Initial tests at Target zone C
- .41" beam diameter at can

Lessons Learned

- Uneven flux in beam target
- Coating Development improvement
 - Adhesion and diffusivity

Future Work

- Current method only tested on single 18650, plan is to move onto larger cells that have struggled with heater initiation
- Method to be adapted to pack level testing with fiber initiation
- System to be integrated with NASA Fractional Thermal Runaway Calorimeter
- New lens, coating, and laser wavelength studies need to be done, as well as varied cell can material.

Thank you!

For further information, please contact:

John Jacob Darst, NASA JSC John.j.Darst@nasa.gov

	21
1/6/20	15

Laser

Wattage

Target Area