The REIMEI Satellite Li-ion Batteries after more than 13 Years of Operation

O. Mendoza¹, Y. Sone^{1, 2}, L. J. Bolay^{3,4}, B. Horstmann^{3,4}, A. Latz^{3,4}, E. Hosono⁵, D. Asakura⁵, H. Matsuda⁵, M. Umeda⁶

- 1) Japan Aerospace Exploration Agency (JAXA)
- 2) The Graduate University of Advanced Studies (SOKENDAI)
- 3) German Aerospace Center (DLR)
- 4) Helmholtz Institute Ulm
- 5) National Institute of Advanced Industrial Science and Technology
- 6) Nagaoka University of Technology

REIMEI = 「黎明(れいめい)」 = Dawn

- REIMEI had three cameras for the aurora observation with different wave length.
- It was launched in August, 2005, and injected along the low-earth-polar orbit.

Lithium-Ion cell and battery Specifications

Lithium-Ion pouch cell

			1		
$\langle \gamma \rangle$	2.		- Alexandre		
L /			77 		
				4	
g 30 40 58 80 1	70 20 90 100 170 124	130 140 150 160	176 180 190 200	218 228 238 248	250 280 27

Lithium-Ion battery

Configuration	7 series of the cells 2 module installed to the battery		
Potting Material	Epoxy Resin		
Case Material	AI		
Dimension	168 × 102 × 96 mm ³		
Weight	2.42 kg		
	Weight	70 Wh/kg	
	Volume	102.2 Wh/L ₃	

Floctrodo	Positive	LiMn ₂ O ₄	
Electiode	Negative	Graphite	
Rated Capacity		3 Ah	
Weight		75 g	
Dimension		145 x 80 x 4 mm	
Energy	Mass	158 Wh/kg	
Density	Volume	340 Wh/L	
Charge Voltage		4.1 V (4.2 V)	
Lower Limited Voltage		3.0 V	

Block diagram of the electrical power subsystem for 'REIMEI'.

Battery Operation

- 15 16 cycles a day
 - 1cycle:charge 60min. / discharge: 35 min.
 - DOD = 10~20 %
 - Charge by 1.5 A.
 - CC-CV charge : 4.10 V/cell (V2 mode),

or 4.20 V/cell (V1 mode).

- Discharge rate is less than 0.5 C
- Temperature controlled between 19 and 22 °C.
- Over 12 years has passed
 - Over 60,000 cycles

Battery Telemetry data

REIMEI's Battery End of Discharge Voltage

End of Discharge Voltage and End of Charge Voltage BATTERY 1

End of Discharge Voltage and End of Charge Voltage BATTERY 2

State of Health Estimation for Li-ion Batteries

Experimental Data

Telemetry data from REIMEI Satellite

End of Discharge Voltage Prediction

-Prediction Model-

Gaussian-Support Vector Machine

Support Vector Machine is a machine learning tool for classification and regression. This regression is considered a nonparametric technique because it relies on kernel functions.

• The prediction model was obtained using the Matlab Statistics and Machine Learning Toolbox

Reference:

- 1. Journal of Power Sources, 289, 105-113 (2015).
- 2. Journal of The Electrochemical Society, 165 (2), A1-A15 (2018).

End of Discharge Voltage

Presented by DLR at the 2018 Conference on Advanced Power Systems for Deep Space Missions

REIMEI Battery Data

In-Flight Data, 25 Sept 2012 30 4 **Battery Datasets** / degrees C 28 3 Cycle data from 12 years Datasets consist of voltage current and temperature 4.104.0026 2 Charge current / 24 1 22 0 20 Þ 18 -2 Current for Battery 1 Voltage of battery 1 Voltage of Battery 2 16 -3 Temperature of Battery 1 perature of Battery 2 Laboratory Test 14 -4 3.85 (Baseline Condition) South Pole 8 0 1 2 3 5 7 6 Observation 3.80 Time / hours 15 20 25 30 35 40 5 0 10 Time / min

 > Deep Space Exploration > Simon Hein •
 Understanding Batteries through Modeling and Simulation > 23 October 2018

Volume Averaged 1D + 1D Model

• The model is based on volume averaged transport theory and reaction kinetics equations.

- Porosity
- Tortuosity
- Particle radius

- Maximal Li-ion concentration
- Specific surface area
- Transference number
- Ionic conductivity
- Diffusion coefficient
- Reaction rate constant
- Symmetry factor

Doyle, M., Fuller, T. F., Newman, J., JES 140 (6), 1526–1533 (1993).

 > Deep Space Exploration > Simon Hein
 Understanding Batteries through Modeling and Simulation > 23 October 2018 Presented by DLR at the 2018 Conference on Advanced Power Systems for Deep Space Missions

Simulation of In-Flight Data

	North Pole	South Pole
Charge	1.5 A/4.1 V	
(CC/CV)	$63 \mathrm{min}$	
	0.88A	0.78A
	$15 \min$	25 min
Discharge		0.96A
(CC)	0.74 A	$5 \mathrm{min}$
	$18 \mathrm{min}$	1.6A
		3min
ΔSOC	14%	16%
Temperature		
Battery		
Eclipse	$20^{\circ}\mathrm{C}$	
$\operatorname{Sunlight}$	20°C	
Solar panel		
Eclipse	-70°C	
Sunlight	140°C	

Brown, S. et al. J. Power Sources 185, 1444–1453 (2008).

Japan Aerospace Exploration Agency (JAXA) provided the battery data of satellite REIMEI

DLR.de • Chart 21

 > Deep Space Exploration > Simon Hein
 Understanding Batteries through Modeling and Simulation > 23 October 2018

3D Simulations of Lithium-Ion Batteries

 Thermodynamically consistent multiphysics model

A. Latz and J. Zausch, J. Power Sources 196, 3296 (2011)

- Finite-Volume Code based on the CoRheoS framework of Fraunhofer ITWM
 - Newton algorithm for nonlinear iterations
 - Algebraic multigrid (SAMG) for Linear
 Algebra
- Input: geometry and material parameters
- Output: Li-ion concentrations *c*, electric voltages *φ*, temperatures *T* in each spatial point

Development of a Hybrid Data-driven/Model-base Method to Estimate and Predict the Capacity fade for the REIMEI Batteries

Summary

After more than 12 years the REIMEI satellite is still in operation.

> The REIMEI's mission is dedicated to analyze its batteries.

The end of discharge voltage of the batteries is being monitored.

ACKNOWLEDGEMENT

 This research is partially supported by 'International Joint Research Program for Innovative Energy Technology' of Ministry of Economy, Trade and Industry (METI).