Temperature Adjustable Thermal Management System with Thermal Runaway Protection for Li-ion Packs

Background

• Cell Chemistry and Energetics - High power/energy but poor stability. Lower power/energy but good stability.

Thermal Event Energies

- Thermal Event Energy Data ranges for different Li-ion Chemistries
 - All data based on 18650 Cylindrical cells at 100% SOC

Chemistry	Tmax	Heat of Reaction, ΔH in Joules			
LFP	243-330 °C	1000-7,300			
NMC	665-731 °C	14,900 – 24,900			
LCO	654-709 °C	17,900-20,600			
NCA	-	31,100			

Ref: Experimental Analysis of Thermal Runaway in 18650 Cylindrical Li-Ion Cells Using an Accelerating Rate Calorimeter, Lei, et. al, *Batteries* June 2017, vol. 3, issue 2, 14

Experimental Thermal Runaway Data

• Nail Penetration at 100% SOC

Confidential to Outlast Technologies LLC

Various Products

• Various technologies and solutions that work in specific cases.

	Paraffin PCM	Graphite	Air	Combination 1	Optimized Combination 2
Thermal Mass	\checkmark			\checkmark	\checkmark
Thermal Conductivity		\checkmark		\checkmark	\checkmark
Hi Pack Energy Density & Connectivity (s/p)				\checkmark	\checkmark
Thermal Propagation	Fail	Fail	Fail	Fail	PASS
	High thermal mass/ latent heat but poor FR	High conductivity but no thermal mass	Poor conduct., no thermal mass, no FR	Poor thermal mass	Optimized thermal mass and other properties
References	-Outlast -Wilk, Wilke, et.al	-NREL -Wilk, Wilke, et.al	-Outlast -Wilk, Wilke, et.al -NASA	-Outlast -Wilk, Wilke, et.al	-Outlast -Customer Testing -Wilk, Wilke, et.al -NASA

21700 NCA cells, 552P

Transition	Dim.	N	Test Conc	lition	Behavior of Trigger Cell (Burning Cell)	Behavior of Adjacent Cell			Judgement		
Temperature (degree C)	Between Cells (mm)	Between Cells (mm)	en o	Environmental Temperature (degree C)	Cell Charging Condition	Peak Temperature (degree C)	Burned or not	Peak Temperature (degree C)	Time from testing start to burning (sec.)	Pass: No burning NG: Burning	
		1	55	Full	658	Burned	182.9	848.2	NG		
40.45	1.5 1 2	1.5	1.5	2	55	Full	592.8	Burned	177.8	282.4	NG
40-45				1	20	Full	709.4	Not	116.2	-	Pass
						2	20	Full	596.2	Not	120.7
	1	55	Full	821.5	Not	134.8	-	Pass			
55	2	2	2	1	45	Full	756.8	Not	143.1	-	Pass

Test Sample: 5S2P Battery Pack

Pack Design Variables

NO one-size-fits-all

Temperature/Safety Relationship

LHS[®] Solutions

- Thermal Runaway Protection
- Cell Surface Thermal Control
- Homogenous Pack Temperatures
- Temp. Management leads to Increased Cell Life
- Improved Fast Charging Properties
- Passive Thermal Management
- Electrically Insulative
- Allows for Cell Expansion/Contraction
- Shape Stable
- Less Complexity, Economical and generally lower weight than metal or ceramic.

LHS Products for Battery, Electronic and Industrial Applications

LHS materials are provided in a number of different formats from compounded product to finished components:

LHS™ Thermal Energy Storage

Various Product Transition Temps.

Products

- Fill and Flow material (F&F, F&F FR)
- Matrix sheets
 - Same material as molded cylindrical cell matrix
 - Provide thermal management and inhibit propagation for pouch and prismatic cell systems

LHS Matrix for Battery Packs

• Various large scale customers and pack

Thermal Propagation Testing

• 700 Wh series connected pack - PASS

LHS Matrix - Pack Temperature Homogenous Temperatures

- A 10-15°C reduction in battery temp. Batteries stay below 55°C
- Better homogeneity for battery temperatures.
- Less complex C/D electronics required (BMS)

LHS® Battery Thermal History Comparison

• Battery exposed to less thermal history, ~97°C·min/cycle in this experiment.

Thermal Cycling and Reliability

Testing Program:

- A control cell and a LHS® covered cell were tested on Arbin BT Battery System (UR18650RX).
- The cells rest for 1 minute before charging at 1.95A till voltage reaches 4.2V, then trickle charges until current drops to 0.25A.
- Cells rest for 10 seconds before discharging at 20A until voltage of 2.5V is achieved.
- The cells rest for 5 minutes before looping back to the charge cycle. This repeats for 1000+ cycles
- Control cell degraded and died after 700-800 cycles. Similar batteries in LHS® products continued for >1000 cycles.
 - No loss of LHS® properties, no damage or matrix change.

NCR middle vs outer

NCR vs UR

Hochschule Aalen

Results of 6-cell en bloc

TI = plastic

NCR cells (high energy) show generally higher temperatures than UR cells (highpower)

25°C test chamber temperature; Abbreviations: NCR = NCR18650PF; UR = UR18650RX; LHS = LHS-matrix;

Confidential to Outlast Technologies LLC

Concluding Remarks

- Understanding the pack variables, one can adjust the product transition temperatures and latent heat storage capacity to provide:
 - Prevent Li-ion cell thermal propagation and runaway.
 - Effectively reduce li-ion battery temperatures and improve battery life.
 - Provide homogenous temperatures across packs.

Corporate Headquarters Outlast Technologies LLC 831 Pine Ridge Road, Golden, CO 80403

OutlastLHS.com

Competitive Technologies

Confidential to Outlast Technologies LLC

Benefits & Comparison

	LHS [®] Battery Matrix	PCM/Graphite	Ceramic	Metal/Graphite Heat Sink	Air	Active Cooling System
Thermal Runaway Protection	\checkmark	✓	\checkmark	√ <i>γ</i>	X	Vχ
Increased Battery Life	\checkmark	\checkmark	X		X	\checkmark
Cell Surface Thermal Control	\checkmark	\checkmark	X		X	\checkmark
Homogenous Pack Temperatures	\checkmark	\checkmark	X	X	X	\checkmark
Improved Fast Charging Properties	\checkmark		X		X	
Passive Thermal Management	\checkmark	\checkmark			X	
Electrically Insulative	√	X	\checkmark	X	\checkmark	
Thermally Conductive		\checkmark	\checkmark	\checkmark	X	
Weight	 ✓ 	\checkmark	X	X	\checkmark	X
Cell expansion/contraction	\checkmark	✓	X	X	\checkmark	
Shape Stable	√	\checkmark	\checkmark	\checkmark		
Complexity / \$\$	\checkmark	X	X	×χ	\checkmark	X

Benefits and Comparison

- Carbon or Metal Heat Sinks
 - Electrical cond., weight, thermal cond. (pro/con)., rigid, \$, etc.
- Ceramics
 - Weight, thermal cond. (pro/con)., rigid, \$-\$\$, etc.
- Active cooling systems
 - \$\$, complexity, homogenous cell touch, weight, propagation resistance?
- Intumescent FR systems
 - \$, smother fire, no temp. management, lose pack, design to contain, etc.

LHS Products for Battery, Electronic and Industrial Applications

BENEFITS	Battery Matrix	Battery Sheet	LHS FR, Fill & Flow	LHS Fill & Flow	Battery Sleeve / Elastomer	Encapsulant & Potting Compound
Thermal Runaway Protection	+	+	+			+
Increased Battery Life	+	+	+	+	+	+
Cell Surface Thermal Control	+	+	+	+	+	+
Thermal History Reduction	+	+	+	+	+	+
Homogenous Pack Temperatures	+	+	+	+	+	+
Improved Fast Charging Properties	+	+	+	+	+	+
Passive Thermal Management	+	+	+	+	+	+
Electrically Insulative	+	+	+	+	+	+
RoHS Compliant	+	+	+	+	+	+
Shape Stable	+	+			+	+