

LITHIUM-ION SIDEWALL RUPTURE CHARACTERIZATION WITH 3 BATTERY DESIGNS

Jesus E. Trillo¹, David Petrushenko^{1,2}, Eric Darcy¹

 ¹NASA Johnson Space Center
²Department of Chemical Engineering, University of South Carolina

2022 NASA Battery Workshop, Huntsville, AL

AGENDA

- Introduction and motivation
- Sidewall rupture (SWR) characterization plan

2

- Design description, testing, and results
 - Design A, B, and C
- Conclusions

ACRONYMS

CUI/Basic

- BR Bottom Rupture
- BTA Battery Test Article
- CFT Carbon Fiber Tube
- DPA Destructive Physical Analysis
- PPR Passive Propagation Resistant
- SGR Spin Groove Rupture
- SWR Sidewall Rupture
- TR Thermal Runaway

GUIDELINES FOR PASSIVE PROPAGATION RESISTANT (PPR) BATTERIES

- 1. Reduce the risk of cell can sidewall breaches (Sidewall Rupture)
- 2. Provide adequate cell spacing and heat rejection
- 3. Individually fuse parallel cells
- 4. Protect the adjacent cells from the hot thermal runaway ejecta
- 5. Prevent flames and sparks from exiting the battery

Figure: 134P-3S PPR battery pack developed by NASA successfully sustained 12 single trigger events without propagating thermal runaway

NASA

Cell type: Li-ion 18650 Capacity: 3.5 Ah State of Charge: 100 % (4.2 V) Bottom vent: No Wall thickness: Not known Separator: Polymer Orientation of cell: Positive end up Location of ISCD radially: N/A Location of ISCD longitudinally: N/A Side of ISCD in image: N/A

Location of FOV longitudinally: Top Frame rate: 2000 Hz Frame dimension (Hor x Ver): 1280 x 800 pixels Pixel size: 17.8 μm

SWR CHARACTERIZATION WITH UNSUPPORTED CELLS

CELL LEVEL TESTING

Cells triggered into TR in unsupported configuration looked promising in terms of SWR rates:

- Panasonic NCR A&B = 10% SWR
- Samsung 30Q = 7% SWR

BATTERY TESTING

When PPR tested in their battery configuration, both cells were found to experience much higher SWR rates.

SWR CHARACTERIZATION WITH UNSUPPORTED CELLS

PROBLEM

-False sense of low risk of SWR by unsupported cell-level characterization tests has led to costly PPR test failures.

SOLUTION

1. Include battery specific relevant structural constraints on the cells

2. Include enough cells to provide a statistically defendable result.

¹From a lot of 60,000 cells, 270 cells must be tested to achieve 90% confidence

- *Only 1 failure allowed to reach 1x5 risk level, or 3 if testing >500 cells
- 3. Test different cells to compare performance.

¹Daniel, W. W., & Cross, C. L. (2018). Biostatistics: a foundation for analysis in the health sciences. Wiley.

CHARACTERIZATION PLAN

Design	Battery test article (BTA) that captures the salient features of how cells are supported on the original battery design. Test different cells.					
Test	Drive all cells into Thermal Runaway via hot plate.					
Data	Strip and examine all cell carcasses to determine risks of: -Side Wall Rupture (SWR) -Spin Groove Rupture (SGR)					

SALIENT FEATURES BY DESIGN

Design C

CELLS TESTED

NCR 18650 A & B

LG 18650 M36

MOLICEL 18650 M35A

- Double crimp header design
- Header burst pressure ~1000 psia
- 0.005" Can wall thickness
- 3400 mAh

- Single crimp header design
- Header burst pressure ~808 psia
- 0.010" Can wall thickness
- 3450 mAh

- Single crimp header design
- Header burst pressure ~867 psia
- 0.0063" Can wall thickness
- 3500 mAh

BATTERY DESIGN A

DESIGN A

CARBON FIBER TUBES (CFT) SUBSTITUTE FOR STEEL SLEEVES

- Steel sleeve tubes are difficult to source and control
- Carbon fiber tubes are less dense, and may be an alternative to steel sleeves
- Source Control Specification, EP-WI-041

DESIGN A - TEST

Mica covers to protect adjacent cells from ejecta

TEST VIDEO

DESIGN A - POST TEST

CELL INSPECTION - SAMPLES

PANASONIC NCRA

Spin groove & Sidewall Rupture Cell with 0.018" CFT

LG M36

MOLICEL M35A

Spin groove and Sidewall Rupture Cell with 0.018" CFT

Spin groove Rupture Cell with 0.018" CFT

DESIGN A SPECIFIC OBSERVATIONS

- Panasonic NCRA high propensity to SWR
- LG M36 had NO SWR
- Molicel M35A high propensity to SGR
- Epoxy in CFT evaporates due to high temperatures of TR. The rupture did not penetrate the CF.

BATTERY DESIGN B

DESIGN B

Salient features: Length and header constraint

18650 cell

G10 insulating

donut

CELL INSPECTION - SAMPLES

MOLICEL M35A INTERNAL SHORT CIRCUIT DEVICE (ISCD)

Spin groove & Sidewall Rupture

LG M36 BARE CELLS

Sidewall Rupture ✓ Only SWR from 1305 tests

DESIGN B SPECIFIC OBSERVATIONS

- ISCD cell trigger method is more violent. All cells observed to have at least SGR
- Panasonic NCRB had no off nominal failures, but just 20 cells tested
- Epoxy in CFT evaporates due to high temperatures of TR. The rupture did not

penetrate the CF.

BATTERY DESIGN C

DESIGN C

CELL INSPECTION - SAMPLES

MOLICEL M35A

Spin groove & Sidewall Rupture with collar perforation

LG M36

DESIGN C - RESULTS

DESIGN C SPECIFIC OBSERVATIONS

- Molicel M35A high propensity of SGR when encased in an aluminum collar
- Collar perforations occurring with Molicel M35A, none for LG36

CONCLUSIONS

PRELIMINARY FACTORS DRIVING SWR/SGR

Cell Level

- High energy density
- Low can wall and spin groove thickness/strength
- High header burst pressure
- Absence of bottom vent path
- Crimp design (double vs single)

Battery Level

- Preventing cell header bursting/release
- Insufficient can wall support
- Battery assembly/cell processing

FINAL THOUGHTS

- LG M36 cells performed best against SWR and SGR in all three designs
- SWR/SGR depend on various factors, testing is critical for characterizing the risk of every unique battery design

THANK YOU

DESIGN A RESULTS

Battery Design A: Cell Description	Cell Quantity	Nominal Top Vent (NTV)	Nominal Bottom Vent (NBV)	Total Side Wall Rupture (SWR)	Side Wall Rupture Below UCS	Spin-Grove Bottom Top Rupture Rupture Rupture (SGR) (BR) (TR)		Top Rupture (TR)	Jelly-Roll Ejection (JRE)	Header Release (HR)
Panasonic NCR18650A Cell with 0.018" CFT	45	2 (4.44%)	0	22 (48.9%)	[2 of 22] (4.44%)	9 (20.0%)	4 (8.89%)	4 (8.89%)	4 (8.89%)	37 (82.2%)
Panasonic NCR18650B Cell with 0.018" CFT	45	29 (64.4%)	0	0	0	1 (2.22%)	0	1 (2.22%)	0	16 (35.6%)
LG INR18650M36 Bare Cell	540	207 (38.3%)	0	0	0	0	4 (0.741%)	321 5 (59.4%) (0.92		24 (4.44%)
LG INR18650M36 Cell with 0.005" Steel Sleeve	540	106 (19.6%)	0	0	0	0	11 (2.04%)	11 192 1 .04%) (35.6%) (0.185%)		20 (3.70%)
LG INR18650M36 Cell with 0.012" CFT	540	236 (43.7%)	0	0	0	0	7 (1.30%)	7 285 2 1.30%) (52.8%) (0.370%)		28 (5.19%)
Moli INR-18650-M35A Cell with 0.012" CFT	538	260 (48.1%)	0	0	0	23 (4.27%) 9 (1.67%) 278 (51.7%) 0		0	9 (1.67%)	
Moli INR-18650-M35A Cell with 0.018" CFT	540	369 (68.3%)	0	1 (0.185%)	0	24 (4.44%)	3 (0.556%)	161 (29.8%)	0	7 (1.30%)

DESIGN B RESULTS

Battery Design A: Cell Description	Cell Quantity	Nominal Top Vent (NTV)	Nominal Bottom Vent (NBV)	Side Wall Rupture (SWR)	Spin-Grove Rupture (SGR)	Bottom Rupture (BR)	Top Rupture (TR)	Jelly-Roll Ejection (JRE)	Header Release (HR)
Panasonic NCR18650B Cell with 0.012" CFT	25	17 (68.0%)	0	0	0	0	8 (32.0%)	5 (20.0%)	0
Moli INR-18650-M35A ISCD Cell	20	1 (5.00%)	0	11 (55.0%)	20 (100%)	1 (5.00%)	8 (40.0%)	1 (5.00%)	11 (55.0%)
LG INR18650M36 Bare Cell	270	148 (54.8%)	0	1 (0.370%)	2 (0.741%)	10 (3.70%)	113 (41.9%)	1 (0.370%)	7 (2.59%)
LG INR18650M36 Cell with 0.012" CFT	225	141 (62.7%)	0	0	1 (0.444%)	2 (0.889%)	65 (28.9%)	0	0

DESIGN C RESULTS

Battery Design A: Cell Description	Cell Quantity	Nominal Top Vent (NTV)	Nominal Bottom Vent (NBV)	Side Wall Rupture (SWR)	Spin-Grove Rupture (SGR)	Bottom Rupture (BR)	Top Rupture (TR)	Jelly-Roll Ejection (JRE)	Header Release (HR)	Collar Perforations (CP)
Molicel INR-18650-M35A Cell with 0.020" thick Aluminum Sleeve	270	113 (41.8%)	0	8 (2.96%)	71 (26.3%)	5 (1.85%)	132 (48.9%)	8 (2.96%)	19 (7.04%)	20 (7.41%)
LG INR18650M36 Cell with 0.020" thick Aluminum Sleeve	270	25 (9.26%)	0	0	3 (1.11%)	5 (1.85%)	217 (80.4%)	4 (1.48%)	28 (10.4%)	0