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CUSTOMERS

OM+

SATELLITES IN ORBIT

9500+

STARLINK

COUNTRIES

155+

SATELLITES DEORBITED

1500+

CONTINENTS

7/

DEAD SATELLITES TODAY
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CONSTELLATION GROWTH

Starlink V3 satellites - designed for Starship, with each launch adding 60 Tbps of capacity to the Starlink network - more than
20x the capacity added with every V2 Mini launch on Falcon 9
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Starlink V2 increased network capacity +50% Starlink V3 begins launching on Starship

123 dedicated launches of Falcon 9 Each satellite adds >1Tbps down & 200Gbps up
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LOW ALTITUDE OPERATION

“Beginning of life" failures happen at low altitudes, and the satellite deorbits quickly — keeping low-Earth orbit free of debris

In 2026, Starlink will also undertake a major operation to lower its 550km operational shells down to ~480km

A80KM LEO ORBIT
DEMISE: <1 YEAR

350KM VLEO ORBIT
DEMISE: MONTHS

280KM INSERTION ORB)T
DEMISE: WEEKS



BATTERY RELIABILITY

230 Wh/kg Pack Design +1000 Satellites Quarterly >100 MWh Battery Capacity in
>50 MWh Battery Capacity per Year Orbit Today



CELL-LEVEL SCREENING & OPERATION

ocv DCR
CT Scanning (Qualification) — assess variations in mechanical build Cell Screening (Acceptance) — measure OCV Decay, DCR, ACZ, and
mechanical integrity at pack builds

quality & monitor long-term cycling phenomena
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Ultra High-Precision Coulometry (Qualification) — assess electrochemical ~ Orbital Operation — tunable SoC windows reduce degradation,
reduce sidewall rupture rate, and increase pack homogeneity

performance variation & infer long-term cycling performance



PACK ACCEPTANCE TESTING

Cell Pack Satellite , . . .
Incoming Outgoing Integration Launchsite Prelaunch Orbit Raise S5yr Mission
Cell Acceptance Pack OCV & GITT Busbars Recheck after Final charge Low-altitude checks Weightless,
Interconnects Contact Resistance cross-country after storage + weeks of thrusting Room Temp,

Sensor Health Thermal Check transport C/2, mid-SoC
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Pack Acceptance Testing (HASS-like stress test)
performed over auto-dunk tanks

Vibration Qualification performed with stacked satellites



ARC-RESISTANT DESIGN

Spacecraft arcing has destroyed satellites for decades. We find:

* Pack-level arc qualification should take place after typical vibe/shock/thermal
* Arcing can catastrophically fail packs given voltages >32V and pressures <1Torr
* Many flightlike tests are required for statistical confidence

-

Lab-scale testing of Arcing phenomena Empirical Testing of Pack Design
Metal Vapor Arc = Cascading Arc = Plasma Arc Pressure, Venting, Voltage, Distance, & Material Dependent



MMOD STRIKE SURVIVAL

Micrometeoroid and Orbit Debris (MMOD) Strikes are certain to occur with Megaconstellations.

* Refining estimates of particle size, velocity, and incoming vector helps protect the most vulnerable areas
* Empirical hypervelocity testing is needed to understand pack-level response

* PPR testing may include multiple initiator cells to represent MMOD strikes

* Thought experiment: is it better to penetrate a single cell, or dent multiple cells?

Hypervelocity Impact Testing Resulting Cell Damage informs PPR Strategy
Pack design, orientation, and altitude dependent Vulnerable locations + initiator cell quantity



RADIATION TOLERANCE

Typical radiation upsets cause latch-ups and railed telemetry; FDIR is straightforward. But what if failures aren’t binary?

* Understand nominal time-constants & telemetry magnitudes.
* Can cell voltages ever truly be at rest (dV/dt flagging)?
* Can cell temperatures truly change +5°C/min (dT/dt flagging)?
* Do failed thermal sensors present as an impossible -200°C, or a possible -5°C?

* Megaconstellations offer a unique opportunity for data collection with COTS sensors & clever software (below)

550

CMOS Imager under high proton
flux irradation measure the South Atlantic Anomaly (SAA)

=" 500
150

600

400

200

Cumulative Dose [rad(SiO2)]

Ten minutes of constellation-level mapping to find & Total lonizing Dose (TID) Measurements are
below estimates



PASSIVE PROPAGATION
RESISTANCE

Test conditions are critical

—— Solar Mean

20 Solar Min/Max

15
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* Powered vs Unpowered systems

% Over Baseline in 460-480km shell

¢ Nominal vs faulted thermal conditions

*  Vacuum level heavily influences outcome 0

0 1 2 3 4

* Vary initiation modes to represent different faults Particulate K;;;Iysis Informs Worst-Case Debris Release
* Nail Penetration may represent MMOD
* Simple heaters may overtest or force SWR
* Arcinitiators should use flightlike materials
Fault Detection, Isolation, and Recovery (FDIR)

* If single-cell runaway is detected, determine the
appropriate response — lower SoC? lower temperature?

Design Considerations

* Vent sizing for debris must prevent plasma ingress

* Cell-adjacent materials and coatings all heavily iterated
upon for PPR & arcing

Inadequate Pack-Level Test Setup
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