

2019 NASA Aerospace Battery Workshop

Space Cells and Space Batteries by EAS: Custom Made Battery Design and New Cell Developments

> Michael Deutmeyer Dr. Klaus Brandt Dr. Stephan Horras

Huntsville, Alabama November 20th 2019

Monbat Group

Monbat is a leading manufacturer and distributor of lead-acid batteries used in transportation, telecommunications and industrial applications. The Company offers a broad range of starter, stationary and other special purpose batteries.

The lead-acid group is vertically integrated business model with operating production and recycling facilities in Bulgaria and an additional recycling plant in Romania and Serbia.

Monbat sells the majority of its products to the aftermarket in over 60 countries through an extensive network of distributors.

(Public company on the BSE)

EAS Company History

Foundation of GAIA Akkumulatorenwerke GmbH at Nordhausen/ Germany

Development of cell portfolio of large cylindric cells for hybrid electric applications based on a unique electrode production technology using NCA and LFP chemistries. Foundation of Joint Venture EAS Germany GmbH

focus aerospace and industrial applications and hybrid-electric power systems Successful introduction of new NCA aerospace cells for launchers serving various launching systems such as Proton M, Eurokot, Yushnoe Successful introduction of large sized ultra high power LFP cells for first VTOL aircrafts

Merger of GAIA and EAS Germany via asset deal into EAS Batteries GmbH with MONBAT as new owner

significant investments in and improvement of production technology, battery development and testing and new product line

ingu

01 PRODUCTION TECHNOLOGY

aviant

1.0

02 CELL ECHNOLOGY

03 SPACE & AEROSPACE

04 Outlook

.....

mmmm

0_704

\$ \$ \$

5

ACHTUNG!

CALLER T

Third

1161

I SHE I

-11 mannen

Citeriennennii

Slitting

.

Lee

N II II III II II

Lamination

0

..........

8 8 (8)

Te - OL

Calandering

ing

01 PRODUCTION TECHNOLOGY

arian

-

02 CELL TECHNOLOGY

03 SPACE & AEROSPACE

04 Outlook

EAS Cell Portfolio

EAS NCA space cell with 7.5 and 10 Ah

4.3

4.1

3.9

3.7

3.5

3.3

3.1

2.9

2.7

0

Voltage [V]

10 Ah

Voltage vs discharge capacity for various discharge currents

Discharge capacity [Ah]

Voltage vs discharge capacity for various temperatures

25 ° C

10

45 ° C

60 ° C

12

Discharge capacity [Ah]

6

-30 ° C

4

2

Discharge Current at every

-20 ° C

Temperature: 1.0 C (10 A)

-10 ° C

8

0°C

Discharge capacity [Ah]

New Cell Generation II

ing

01 PRODUCTION TECHNOLOGY

arian

02 CELL TECHNOLOGY

03 SPACE & AEROSPACE

04 Outlook

VEGA TDRS battery – project

Development of an ultra robust and shock proof high capacity space battery for providing power to the NASA TDRS communication system for VEGA and VEGA C.

Battery located on the payload adapter (PLA)

Battery optimized in terms of weight and volume. Only discharge function during mission.

Battery Interface Adapter (BIA) including BMS, switches, fuses, etc. separated from space battery.

Battery charger separated from space battery and BIA.

Maximum safety – electrically configured for maximum safety, all monitoring and power lines of battery are short-circuit protected

VEGA TDRS battery – concept

VEGA TDRS battery – design and FEM simulation

VEGA TDRS battery – DLR test

VEGA TDRS battery – mechanical test results

Shock: BAT Lateral X, Cell Lateral

— Nex Maximum Input 21 — Nex Maximum April 37 — Nex Maximum ISBN 2 — Nex Maximum ISBN 2 — Nex Maximum ISBN 2 3

LLS: BAT Lateral Y, Cell Axial

Shock: BAT Lateral Y, Cell Axial

Matoral Prequency may

— SRS Mostimas Ingenenii — SRS Mostimas Index 47 — SRS Madmax 10/37/ -----SRS High Hindi -----SRS Reference -----SRS Have Hindi

LLS: BAT Vertical Z, Cell Lateral

Shock: BAT Vertical Z, Cell Lateral

------SRS High Limit ------SRS Reference ------SRS Low Limit

VEGA TDRS battery – design philosophy

- Limited number of parts in battery assembly
- Two-part housing with self-contained cell block
 - minimises volume and parasitic mass
 - provides simple assembly process
- Cell holders transfer inertial forces from cells to housing
 - PEEK/G11 cell holders provide electrical and thermal isolation. Cell cans not load carrying
- > Battery inertial forces transferred to support structure through integral feet
 - > chassis consists of thin-wall closed box. Loads carried mainly by shear in the walls
 - walls act as shear panels with reinforcing ribs carrying bending loads
- Principle of 'limited mechanical fixation' results in highly damped design
 - intelligent use of friction and material hysteresis limits amplification of random vibration and reduces shock transmission
- > Stiff ($f_1 > 300 \text{ Hz}$) and strong design

VEGA TDRS battery – thermal analysis

- Conductive environment
 - Hot Case : Adapter Interface at 120°C
 - Cold Case : Adapter Interface at -30°C
- Radiative environment
 - Hot Case :
 - Deep space, Z9 solid rocket motor (SRM) radiation, solar radiation, solar albedo radiation, earth radiation
 - Cold Case :
 - Deep space
- Battery discharge profile
 - Pre-Launch :
 - 1045s at 36W
 - Launch :
 - 357s at 36W
 - Flight :
 - 12460s at 165W

- TDRS battery thermal design
 - BAT operating (Fight Limit) temp. range $\approx 0^{\circ}$ C +40°C
 - QL environmental temp. range \approx -10°C +50°C
- Thermal design study using thermal network

VEGA TDRS battery – thermal analysis

- TMM design study
 - Initial conditions 23°C cold-case, 27°C hot case
 - Passive thermal control (white paint)
 - BAT mounted on 8mm PEEK thermal spacers
- TMM results suggests
 - Cells thermally isolated despite harsh thermal environment. Remain well within qualified operating temperature range of -30°C to +60°C
 - To be correlated against thermal vacuum results

VEGA TDRS battery - charger

- additional hardware (electric load) for discharge-functionality
- graphical user interface developed (GUI)
- CAN communication between GUI and BMS and discharge-unit
- monitoring of cell voltage and temperatures
- measurement of Battery capacity
- balancing of battery voltages
- battery can be charged to defined SOC (transportation / storage)

Space References

VTOL Batteries for High Power

Completely designed and engineered inhouse at EAS	180s1p 576V 38Ah 22kWh 328kWp 15 x 12 cell-blocks in series	Demanding power electronics	HOHE SECUT
Special BMS programming for flying application	Optimal cell sorting	Close cooperation with client engineers	
Service at site if needed	Successful commissioning	Already airborne for many hours	E ^E o

ing

01 PRODUCTION TECHNOLOGY

aviant

1

02 CELL TECHNOLOGY

03 SPACE & AEROSPACE

04 Outlook

EAS novel bipolar cell concept for aerospace applications

EAS launched a new and revolutionary cell concept based on its unique electrode production technology. This concept will lead to a significant increase in energy and power density

> 300 – 240 Wh/kg 500 – 8,000 W/kg on pack level Patent Pending

EAS high temperature cells

LITHIUM-ION CELLS FOR ELEVATED TEMPERATURE USAGE

normalized capacity

- Developed in 2019
- High temperature stable
- Field of application: Oil&Gas / Pipeline Inspection / Medical / Military
- Fulfillment of highest safety standards
- Manufactured in EU,
- LFP-titanate cell

Restored Capacity vs Temperature during cycling, 1.4-2.1V, 100% DOD BTC/10RT C/2 1 11 • 75 °C, 1C 0,9 :11 - 80 °C (competitor) 1 • 125 °C, C/2 0,8 . :\ - 115 °C (competitor) 0,7 ١ - 125 °C (competitor) • our technology -- competitor 0,6 • 150 °C, C/2 0,5 50 150 200 250 300 350 400 100 0 Cycle

Take Home Points

EAS has the knowhow and resources to design, manufacture and deliver space grade lithium cells and batteries

EAS has the heritage in delivering mechanically robust and safe cells to the Space industry

EAS has the passion and commitment to become a leading cell and battery supplier to the space industry through developing further our in-house engineering capabilities with project partners

EAS looking to deliver excellent customer service and products to space battery customers

POWER YOU CAN TRUST

Thank you for your attention

www.eas-batteries.com

EAS space cell 7.5 Ah NCA cathode – full specifications

-	-				
-	7	N	-	1	
_		Δ.			

UHP341440 NCA Lithium Ion Cell - High Power 3.6 V / 7.5 Ah / 27 Wh

Physical and Mechanical Characteristics

Diameter	34 mm
Length	174 mm (144 mm without terminals)
Weight	0.32 kg
Volume	0.13
Material	Stainless steel housing Positive terminal: AI M8 length: 10 mm Negative terminal: Cu M8 length: 10 mm

Chemical Characteristics

Cathode	Lithium Nickel Cobalt Aluminium Oxide (NCA)
Anode	Graphite

Electrical Characteristics	Reference Temperature 23°C +/- 3°C
Nominal operating voltage	3.6 V
Nominal capacity at 0.2 C	7.5 Ah
AC Impedance (1 kHz)	≤ 1.2 mOhm
DC Resistance (ESR) 2s pulse discharge @ 20°C / 50% SOC	≤ 6.5 mOhm
Specific energy at 0.2 C	84 Wh/kg
Energy density at 0.2 C	207 Wh/I
Specific power 2s pulse discharge @ 50% SOC, 60C	2,340 W/kg
Power density 2s pulse discharge @ 50% SOC, 60C	5,730 W/I

Operating Conditions	Reference Temperature 23°C +/- 3°C
Recommended charge method	Constant current / Constant voltage
End of charge	I ≤ C/100
Maximum charge voltage	4.2 V
Recommended charge current	Up to 7.5 A (1 C)
Maximum continuous charge current	Up to 30 A (4 C)
Maximum pulse charge current (15 s) (Max SOC 70%, average current <88 A)	120 A (16 C)
Recommended voltage limit for discharge	3.0 V
Lower voltage limit for discharge	2.7 V (at high current or low temperature)
Recommended discharge current	Up to 15 A (2 C)
Maximum continuous discharge current	Up to 150 A (20 C)
Maximum pulse discharge current (2 s)	Up to 300 A (40 C)
Operatingtemperature	-30°C to +60°C
Recommended charge temperature	0°C to +40°C
Storage and transport temperature	-40°C to +60°C
Recommended storage	+10°C to +25°C, 30-50% SOC
Cycle life at 20°C and 100% DoD, 0.5 C	> 1,000 cycles to 80% of nominal capacity
Cycle life at 20°C and 80% DoD, 0.5 C	> 2,000 cycles to 80% of nominal capacity

Voltage vs discharge capacity for various temperatures

Discharge capacity (Wh)

EAS space cell 10 Ah NCA cathode – full specifications

_	-	-	
		-	
_			

X	

HE341440 NCA Lithium Ion Cell - High Energy 3.6 V / 10 Ah / 36 Wh

Physical and Mechanical Characteristics

Diameter	34 mm
Length	174 mm (144 mm without terminals)
Weight	0.32 kg
Volume	0.13
Material	Stainless steel housing Positive terminal: AI M8 length: 10 mm Negative terminal: Cu M8 length: 10 mm

Chemical Characteristics

Cathode	Lithium Nickel Cobalt Aluminium Oxide (NCA)
Anode	Graphite
Electrical Characteristics	Reference Temperature 23°C +/- 3°C
Nominal operating voltage	3.6 V
Nominal capacity at 0.2 C	10 Ah
AC Impedance (1 kHz)	≤ 2 mOhm
DC Resistance (ESR) 2s pulse discharge @ 20°C / 50% SOC	≤ 6.5 mOhm
Specific energy at 0.2 C	113 Wh/kg
Energy density at 0.2 C	275 Wh/I
Specific power 2s pulse discharge @ 50% SOC, 60C	2,000 W/kg
Power density 2s pulse discharge @ 50% SOC, 60C	4,910 W/I

www.eas-batteries.com

Operating Conditions	Reference Temperature 23°C +/- 3°C
Recommended charge method	Constant current / Constant voltage
End of charge	I ≤ C/100
Maximum charge voltage	4.2 V
Recommended charge current	Up to 5 A (0.5 C)
Maximum continuous charge current	Up to 20 A (2 C)
Maximum pulse charge current (15 s) (Max SOC 70%, average current <88 A)	50 A (5 C)
Recommended voltage limit for discharge	3.0 V
Lower voltage limit for discharge	2.7 V (at high current or low temperature)
Lower voltage limit for pulse discharge	2.0 V
Recommended discharge current	Up to 10 A (1 C)
Maximum continuous discharge current	Up to 50 A (5 C)
Maximum pulse discharge current (2 s)	Up to 300 A (30 C)
Operating temperature	-30°C to +60°C
Recommended charge temperature	0°C to +40°C
Storage and transport temperature	-40°C to +60°C
Recommended storage	+10°C to +25°C, 30-50% SOC
Cycle life at 20°C and 100% DoD, 0.5 C	> 1,000 cycles to 80% of nominal capacity
Cycle life at 20°C and 80% DoD, 0.5 C	> 2,000 cycles to 80% of nominal capacity

Discharge capacity (Ah)

