Saft VL51ES Space Cell Qualification Status Dr. Y. Borthomieu, Dr. C. Ma, Dr. E. Ligneel, D.Strzegowski

2 QUALIFICATION RESULTS

Saft proprietary information

Development Objectives

- Maintain and improve Saft leadership in the field of space batteries on both sides of the Atlantic with 2 manufacturing facilities : Cockeysville US and Nersac (France)
- Address mid-term and long-term material obsolescence
- Account for lessons learned that improve process & product robustness, and upgrade to more industrial and cost-effective solutions
- Increase specific (and volumetric) energy by 10% compared to VES180SA/VL48E
- Match or exceed performance of the VES180SA/VL48E for extended life mission with full electric missions (18 years) with less than 8% energy degradation
- Status:
 - Mechanical & Electrochemical PDRs closed resp. in Feb13 & July13
 - CDR held successfully in June 2015
 - Successful QR held Sept, 28th, 2018

Manufacturing Plants

Nersac (France)

- World's 1st production facility for Li-ion automotive batteries
- Opened since January 2008 Automotive ISO/TS 16949
- Capacity installed : 900k power cells or 400k energy cells
- Industrial Processes to reduce costs

Cockeysville (MD, USA)

- Multi technology cells and systems manufacturing
- High power and energy batteries
- Research & Development Center for North America

1 Design

The other states

Battery Workshop, Huntsville

ΔI

Design overview vs VES180

- Same diameter but shorter compared to VES180SA/VL48E (same cell pack design)
- Tabless design
- Same side terminals with easier connection versus VES180/VL48E

6

	VES180SA/VL48E	VL51ES
Average capacity (Ah) @ 4.1V	48 Ah	51 Ah
Average energy (Wh) @ 4.1V	175 Wh	186 Wh
Average Weight (g)	1128 g	1079 g
Voltage range (V)	2.7-4.1 V	2.7-4.1 V
Average Specific Energy (Wh/kg)	158	175
Internal resistance (mΩ)	2.5 m Ω	1.5 mΩ
Operating temperature (°C)	+10 to +40 °C	+10 to +45 °C

2 Qualification results

Nasa Battery Workshop, Huntsville Al, November 2018

VL51ES Space Cell - Qualification Plan

- Similar to the one applied on VES140 and VES180SA (ESA standards)
- Same qualification plan for both Nersac and Cockeysville batches (>100 cells each)
- Electrical characterization (Temperature, current, power, charge rate..)
- Environments tests : sine and random vibrations, accelerations and shocks on head down modules 4P and heat up 6P (on going)
- Thermal vacuum tests
- Radiations up to 8 Mrads with no degradation
- Abuse tests : Overcharge, overdischarge, high temperatures, short circuit, drop test, crush tests
- Air transport qualification
- Calendar test : different SOC (State of Charge) and Temperatures (10 to 40°C)
- Life cycles :
 - Total of 14 different life test conditions
 - Life tests specific to customers/agencies needs (Full electric/PPS (Plasmic Propulsion System),...) started but to be extended depending customers requirements.

QM1, QM2 & QM3 qualification organization

November 2018

QM Acceptance test results (including life tests cells)

Energy and mass trend

QM BOL Electrical test : Characterization

QM BOL Electrical tests vs EOCV, Temperature, Discharge Current and Power

13 November 2018

Capacity vs Discharge Current (20°C)

End of pulses cell voltages

	E00022B	E00038	E00038B
500 A pulse (0,9 s) at 20% DoD	3,26 V	3,26 V	3,28 V
153 A pulse (0,25 s) at 80% DoD	3,37 V	3,37 V	3,38 V

10 C discharge current pulse capability

BOL test (QM2) : EMF vs DoD measurements

- Typical NCA material EMF Li-ion cell
- VES180SA/VL48E and VL51ES OCV curves are identical

6.1.1 VL51ES QM3 4P1S and 6P1S Cell-Pack Configurations

• Tests performed on three 4P3S and 6P1S VL51ES Cell-Packages

2 cell packs with four cells encapsulated head-down and six cells encapsulated head-up are interconnected in series for voltage noise measurement during all mechanical tests

VL51ES QM3 4P1S Cell-Pack qualification tests conditions

Mechanical & thermal qualification tests conditions:

1. Vibration Test sequence per axis (Resonance Frequency, Sine under discharge between 3.9V & 3.85V, Resonance Frequency, Random under discharge between 3.9V & 3.85V, Resonance Frequency)

Sine vibrations (2 octaves per min.) on X, Y & Z axis		
Frequency	Amplitude	
5 –22.3Hz	±10mm	
22.3 – 55Hz	20g	
55 - 70Hz	25g	
70 - 100Hz	20g	

Random vibrations (3 minutes per axis)			
Axis	Frequency (Hz)	Amplitude	
OX-OY	20-80	0.025g²/Hz	
12.85g RMS	80-1000	0.1g²/Hz	
3min	2000	0.05g²/Hz	
OZ	20	0.092g²/Hz	
17.39g RMS	65-400	0.3g²/Hz	
3min	2000	0.06g²/Hz	

Resonance research	Sine sweep 10-2000Hz – 2oct/min – 0.5g

VL51ES QM3 4P1S Cell-Pack qualification tests conditions

2. Shock Test per axis (3.5V < EOCV < 3.6V, 3 shocks per axis under discharge)

Axis	Frequency	Shock spectrum response		
OX-OY	100 Hz	60g		
	1000 Hz	1000g		
	2000 Hz	2000g		
	10000 Hz	2000g		
OZ	100 Hz	60g		
	1000 Hz	1000g		
	2700 Hz	2150g		
	10000 Hz	2150g		

- **3.** Constant Acceleration per axis (3.9V< EOCV < 4.0V, 7.5g-3min. under discharge)
- 4. Thermal Vacuum Cycling (7days at +40°C, 10 cycles from -20°C to +55°C)
- 5. DPA

After each sequence : reference capacity test, charge retention and leak test

- All vibrations criteria verified during mechanical environment qualification tests.
- All electrical performances and cell hermeticity checked after mechanical and thermal qualification environmental tests.
- No damage observed during DPA.

Transport UN and Safety tests

- UN Transportation tests done successfully
- Safety test performed sucessfully
 - Overcharge to 4.5 V done 10 times
 - Overdischarge down to -0.8 V done 10 times
 - Cold charge 0°C C/5
 - Full reversal
 - Drop test
 - Crush test passed successfully
 - Short circuit tests 4 to 10 mOhms

Concret pad

QM3 GEO Life tests

Life test	Key Parameter	QM1	QM2N	QM2C and QM3
LTI	Ref : Accelerated 80 % DOD, 20°C, + radiation	3 cells	3 cells	3 cells
LT2	DOD 70 %	2 cells		2 cells
LT3	DOD 60 %	2 cells		2 cells
LT4	PPS	4 cells	4 cells	8 cells
LT9	EOCV = 4,1V + vibration	3 cells		3 cells
LTIO	Real Time	2 cells		4 cells
LTII	EOCV=4,075V 30°C temperature	2 cells		4 cells
LT12	EOCV=4,075V, Temperature, + Vibration	2 cells		2 cells

LT5, 6, 7 and 8 are LEO life tests

Saft proprietary information

QM Life tests status

- EM3 reached 45 seasons corresponding to 1.5 times 30 seasons (22.5 years) with less than 6 % energy degradation
- QM2 achieved 30 seasons : 15 years demonstration

Accelerated LT 80 % DOD without solstice period, charge C/10 @ 4.05 V

Life tests status

Accelerated GEO cycling without solstice (80% DoD ; EOCV = 4,05 V)

- QM2 & QM3 cell degradation are less than 8 % at 30 seasons
- Internal resistance is stable during the cycling

Life tests status

Accelerated GEO cycling with solstice & EPS (80% DoD ; EOCV = 4.075 V)

Full electric mission with plasmic propulsion (2 cycles per day 20 % DOD)
shows no additive degradation after 14 seasons

5 Conclusion

Battery Workshop, Huntsville ۸١

Nasa

Conclusion

- ✓ VL51ES qualification review has been held successfully 28th Sept 2018
 - BOL VL51ES cell electrical characterization completed on 3 QM batches
 - Cell design passed mechanical/radiations & thermal vacuum tests.
 - Correlated Cell thermal Model.
 - Abuse tests
 - Transport qualification is successful
 - Life tests : 80 % DOD cycle life demonstrated 1.5 factor (45 seasons) on EM3 and the full GEO mission 30 seasons done on QM2
 - 2 flight programs already ongoing with VL51ES batteries

