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• Alternative Solution is reducing the non-battery chemistry mass with 
the development of: 
- Better Internal Battery Monitoring Tools
- Developing internal fault detection & mitigation strategies

• Consequence of Unmitigated Cell Thermal Runaway Events
- Fire
- Explosion
- Debris

Electric Aircraft need Better and Safer Batteries

• Current Solution Results in Low Specific Energy and 
Specific Power for a Current Li-ion Battery
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Simplified Prognostics Architecture

𝑝[𝒙 𝑘 ; 𝜽(𝑘)|𝒚 𝑘! : 𝑘 ; 𝒖 𝑘! : 𝑘 ] 𝑝[𝑘" 𝑘# |𝒚 𝑘! : 𝑘 ; 𝒖 𝑘! : 𝑘 ]

We use two such architectures 1: For Predicting Properties T, V, and EOD
2: For Predicting Aging Parameters and hence, T and EOL
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Constant 15W discharge

B. Bole, C. Kulkarni, and M. Daigle "Randomized Battery Usage Data Set", NASA Ames Prognostics Data Repository (http://ti.arc.nasa.gov/project/prognostic-data-repository), 
NASA Ames Research Center, Moffett Field, CA
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“Noisy” sensor data

Smoothed data used 
for prognostics

Data pre-processing is needed for accurate estimation
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Random Walk is used as a substitute for Simulated Flight Profile
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Time evolution
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Predicting EOF 
Temperature

Predicting Maximum 
Temperature
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• Parameters are estimated using Simulated Flight discharge cycles
• C-rate ranges from 0.2-2.2C
• Each Simulated Flight Profile is stopped after Vmin is reached

Usable Li-ion (𝑸𝒎𝒐𝒃𝒊𝒍𝒆) Diffusion time (𝝉𝒅𝒊𝒇𝒇) Ohmic Resistance (𝑹𝒐)

Temperature increases qualitatively on 
voltage parameterized data
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ROM

Decoupled voltage 
(sensor input or model output) 

For realistic flight profiles with varying 
values of the discharge currents 
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The 3-parameter TM is practically non-
identifiable from SFP data at older age.

TM: 𝑇(𝑡) = 𝑇! + 𝑇 0 − 𝑇! 𝑒"#/% +𝐶&"' ∫(
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The 2-parameter ROM is practically 
identifiable from SFP data at each age.
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The 2-parameter ROM is practically identifiable from SFP data at each age.
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1. Hybrid-ECM-based prognostics can predict temperatures for a “simulated” flight profile  
with noise (assuming Poisson noise and Gaussian noise)

2. Hybrid-ECM thermal model cannot be identified from SFPs alone, therefore it cannot 
be used for predicting aging parameters

3. Thermal ROM with two model parameters is identifiable and can be used to predict the 
aging parameters

4. Collecting experimental data with four datatypes (OCV, galvanostatic with range of 
“usable” C-rates, and “expected” loading profile) can provide better insights and provide 
a flexible path to model reduction for a targeted observable property
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• Li-ion Chemistry
Cathode (LCO/NMC/LFP)
Anode (Graphite/Lithium)
Electrolyte (LiCF3SO3, LiPF6 in EC/DMC)
Separator (PP/Al2O3)

Li)C → C + 𝑥Li* + 𝑥e+

Li,+)CoO- + 𝑥Li* + 𝑥e+ → LiCoO-

Anode reaction

Cathode reaction

Full Multiphysics Models Allows us to identify Important Mechanisms for capturing 
Thermal and Battery Performance with Aging over High C flight profiles
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What are ROMs?
• A ROM is a simplified model of the system which interpolates in a subset of data.
• Different subsets of data will be associated with different ROMs. For example, ROM1 

may predict a battery’s voltage while ROM2 may predict its temperature.
• A ROM can be physics-based or purely data-driven.

Advantages of ROMs:
• The computational complexity of a ROM is lower than that of a high-fidelity model.
• A ROM can be practically identifiable, i.e., its parameters can be uniquely fit to data.

Disadvantages of ROMs:
• Limited range of validity compared to a high-fidelity model.

How to derive ROM?
• Our approach is inspired by Manifold Boundary Approximation Method:
• Parameter sensitivity applied to high-fidelity model is used eliminate some 

parameters from the model
• The resulting ROM is fitted to the data. If it’s not completely identifiable, the 

reduction is repeated, until the final ROM is completely identifiable.

https://physics.byu.edu/faculty/transtrum/mbam
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TM: 𝑇(𝑡) = 𝑇1 + 𝑇 0 − 𝑇1 𝑒/2/4 + 𝐶./0 ∫5
2 𝐼(𝑡6) 𝑉5 − 𝑉(𝑡6) 𝑒
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Fitting the TM to galvanostatic discharge data gives a decent prediction for RW data.


