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Safety Testing -
Thermal Runaway
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SOA Battery 
Weight Penalty

Significant Weight
Added!

• Current Monitored Battery Parameters
- Voltage
- Current
- Temperature

• Consequence of Unmitigated Cell Thermal Runaway Events
- Fire
- Explosion
- Debris

✓ Internal Monitoring
✓ Failure prevention via internal fault detection & mitigation

Emerging Electric Aircraft need Better and Safer Batteries
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Different components

1. Experimental
• Embedded Sensors

2. Modeling
• Detect and Model Fault precursors
• Develop state estimation and prognostic algorithms
• Battery Management System (BMS) Capable of Fault Mitigation
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• Li-ion Chemistry
Cathode (LCO/NMC/LFP)

Anode (Graphite/Lithium)

Electrolyte (LiCF3SO3, LiPF6 in EC/DMC)

Separator (PP/Al2O3)

Li𝑥C → C + 𝑥Li+ + 𝑥e−

Li1−𝑥CoO2 + 𝑥Li+ + 𝑥e− → LiCoO2

Anode reaction

Cathode reaction
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• Overdischarge
• Overcharge
• Dendrite growth
• Internal short circuit

• Deformation
• Crash

• Overheating
• High Temperature

Q. Wang, B. Mao, S.I. Stoliarov, J. Sun, A review of lithium ion battery failure mechanisms and fire prevention strategies, Progress in Energy and Combustion 
Science. 73 (2019) 95–131. DOI: 10.1016/j.pecs.2019.03.002.

https://doi.org/10.1016/j.pecs.2019.03.002
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Q. Wang, B. Mao, S.I. Stoliarov, J. Sun, A review of lithium ion battery failure mechanisms and fire prevention strategies, Progress in Energy and Combustion 
Science. 73 (2019) 95–131. DOI: 10.1016/j.pecs.2019.03.002.

https://doi.org/10.1016/j.pecs.2019.03.002
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Electrolyte Transport

Electrolyte Potential

Electrode Potential

Reaction Kinetics

Particle Diffusion
(Shrinking Core Model)

Degradation Model

Thermal Model ρCp
𝜕T

𝜕t
= qrev + qirr + qohm + qchem − qradiation − qconvection
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SEI formation and the loss of useable lithium 

SEI not only affects Capacity but also the Internal Cell Temperature

• Loss of Lithium
• Increased Impedance
• Change in Exothermic Profile

Loss in capacity
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Internal Short Circuit by Lithium Dendrites 
can cause Thermal Runaway

Monroe, C., & Newman J. Journal of The Electrochemical Society 150, no. 10 (October 1, 2003): A1377–84. DOI: 10.1149/1.1606686

Lithium Dendrite Growth on a Lithium Metal Anode
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Dendrite Growth in a Graphite anode

Abused Graphite Anodes could lead to Thermal Runaway

Lithium plating coupled with lithium 
dendrite growth represents internal 

short circuit
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• Chemical decomposition reaction are 
exothermic

• Peak heating rates are activated at 
different temperatures

• Temperature rise during short circuit 
is often followed by a chemical 
thermal runaway

Battery Materials are Exothermic and Sensitive to 
the Internal Cell Temperature
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7C

5C

3C

2C

1C
20 single Li-ion cells 

Thermal profile with qchem

Effect of Chemical Decomposition on the Internal Temperature 
on a Nominal Li-ion Cell
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Estimating Temperature for Predicting Failure

• Finite Element simulations is used to identify important precursors
• Temperature is easy and cheaper to monitor
• A BMS with internal temperature monitoring and a physics-based 

estimation algorithm could be used for failure prediction 

Thermodynamic

Electrochemical

Ohmic and 
short-circuit

𝜕T

𝜕t
=

1

ρCp
qrev + qirr + qohm + qchem

Chemical 
decomposition
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Fault Detection 

Isolation & 

Identification

Damage 

Estimation
Prediction

uk p(EOLk|y0:k)
System

yk p(xk,θk|y0:k)

p(RULk|y0:k)

F

Prognostics

System receives 
inputs, produces 

outputs

Identify active 
damage mechanisms

Estimate current 
state and parameter 

values

Predict EOL and 
RUL as probability 

distributions

1 2

3 4

Estimation Prediction

Model Based Architecture
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Modifying the Model for Temperature

Two State Estimation Blocks can estimate Cell Voltage, 
Discharge Time, Cycle Life, and Temperature Thresholds
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Predict thermal 
runaway

Predict Internal Cell 
Temperature

Predict Internal Cell 
Temperature

Current State

Evolution of the Material Properties

Time/cycle

Cycle
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Error in the End-of-Discharge estimation

1C

The estimation error reduces as the 
discharge time increases

True EOD
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“Noisy” sensor data

Smoothed data used 
for prognostics

Data pre-processing is needed for accurate estimation
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Applying Prognostics Algorithm on a Short Test Flight Profile

The Distribution of the End-of-Discharge Estimation shows that the 
Algorithm is working correctly. 
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Temperature variation on a nominal and fresh cell is not significant

Applying Prognostics Algorithm on a Short Test Flight Profile



24

• Failure modes identification
• Finite Element Modeling of Failure modes
• Identification of temperature as a failure precursor
• Coupled a thermal model with battery prognostics algorithm
• Voltage and temperature estimation for a single cycle

• Estimating temperature over cycle life
• Estimating temperature for off-nominal behavior


