

Predicting Temperatures in a Li-ion Battery using a Model-based Prognostics

<u>Mohit Mehta</u> (KBRWyle Services, LLC, Intelligent Division, NASA Ames Research Center), Chetan Kulkarni (KBRWyle Services, LLC, Intelligent Division, NASA Ames Research Center), and John Lawson (NASA Ames Research Center)

Funded By

NASA Aeronautics Research Mission Directorate (ARMD) Convergent Aeronautics Solutions (CAS) Project, SPARRCI sub-project.

Presentation date: 11/18/2020

- 1. Project Overview
- 2. Li-ion Failure Introduction
- 3. Li-ion Failure Modeling and Simulation
- 4. Prognostics Overview
- 5. Li-ion Discharge Time and Temperature Estimation
- 6. Conclusion

Today's Bulky Pack Designs

Pack penalty: 23%

Additional mass for "safe" packs

→ Safe pack penalty: 61%

Problem Formulation

Emerging Electric Aircraft need Better and Safer Batteries

- Current Monitored Battery Parameters
 - Voltage
 - Current
 - Temperature
 - Consequence of Unmitigated Cell Thermal Runaway Events
 - Fire
 - Explosion
 - Debris

Significant Weight Added!

- ✓ Internal Monitoring
- ✓ Failure **prevention** via internal fault detection & mitigation

Project Overview Different components

1. Experimental

• Embedded Sensors

2. Modeling

- Detect and Model Fault precursors
- Develop state estimation and prognostic algorithms
- Battery Management System (BMS) Capable of Fault Mitigation

Li-ion (an Overview)

 Li-ion Chemistry Cathode (LCO/NMC/LFP) Anode (Graphite/Lithium) Electrolyte (LiCF₃SO₃, LiPF₆ in EC/DMC) Separator (PP/Al₂O₃)

Anode reaction

 $Li_x C \rightarrow C + xLi^+ + xe^-$

Cathode reaction

 $\text{Li}_{1-x}\text{CoO}_2 + x\text{Li}^+ + x\text{e}^- \rightarrow \text{LiCoO}_2$

Q. Wang, B. Mao, S.I. Stoliarov, J. Sun, A review of lithium ion battery failure mechanisms and fire prevention strategies, Progress in Energy and Combustion Science. 73 (2019) 95–131. DOI: <u>10.1016/j.pecs.2019.03.002</u>.

Q. Wang, B. Mao, S.I. Stoliarov, J. Sun, A review of lithium ion battery failure mechanisms and fire prevention strategies, Progress in Energy and Combustion Science. 73 (2019) 95–131. DOI: <u>10.1016/j.pecs.2019.03.002</u>.

Finite Element Failure Modeling

A typical model for Li-ion

Electrolyte Transport

Electrolyte Potential

Electrode Potential

Reaction Kinetics $\begin{cases} j_{j} \\ j_{j} \end{cases}$

Particle Diffusion (Shrinking Core Model)

Degradation Model

Thermal Model

$$\begin{split} \frac{\partial \varepsilon_{e} c_{e}}{\partial t} &- \nabla \cdot \left(D_{e}^{eff} \nabla c_{e}\right) - \frac{1 - t_{+}^{0}}{F} a_{s} j_{n} = 0\\ \nabla \cdot \left(\kappa_{e}^{eff} \nabla \phi_{e} - \frac{2RT\kappa_{e}^{eff}}{F} (1 - t_{+}^{0}) \left(1 + \frac{d\ln f_{\pm}}{d\ln c_{e}}\right) \nabla \ln c_{e}\right) + a_{s} j_{n} = 0\\ \nabla \cdot \left(\sigma_{s} \nabla \phi_{s}\right) - a_{s} j_{n} = 0\\ \tau_{n} &= i_{0} \left(\exp\left(\frac{\alpha_{a}F}{RT}(\phi_{s} - \phi_{e} - U_{eq})\right) - \exp\left(-\frac{\alpha_{c}F}{RT}(\phi_{s} - \phi_{e} - U_{eq})\right)\right)\\ &i_{0} &= kc_{e}^{\alpha_{a}}(c_{\max} - c|_{r=R_{s}})^{\alpha_{a}} c|_{r=R_{s}}^{\alpha_{c}}\\ &\frac{\partial c_{\alpha}}{\partial t} = \frac{1}{r^{2}} \left(D_{\alpha}r^{2}\frac{\partial c_{\alpha}}{\partial r}\right)\\ &i_{loc, SEI} &= -(1 + HK)\frac{Ji_{loc, 1C, ref}}{\exp\left(\frac{\alpha\eta_{SEI}F}{RT}\right) + \frac{q_{SEI}fJ}{i_{loc, 1C, ref}} \end{split}$$

 $\rho C_{p} \frac{\partial T}{\partial t} = q_{rev} + q_{irr} + q_{ohm} + q_{chem} - q_{radiation} - q_{convection}$

SEI formation and the loss of useable lithium

SEI not only affects Capacity but also the Internal Cell Temperature

FEM Simulations with Failure Model

Monroe, C., & Newman J. Journal of The Electrochemical Society 150, no. 10 (October 1, 2003): A1377–84. DOI: 10.1149/1.1606686

Dendrite Growth in a Graphite anode

Abused Graphite Anodes could lead to Thermal Runaway

KBR Failure Modeling (Chemical Decomposition)

- Chemical decomposition reaction are exothermic
- Peak heating rates are activated at different temperatures
- Temperature rise during short circuit is often followed by a chemical thermal runaway

36

32

28

SEI decomposition

Anode-electrolyte reaction

Electrolyte decomposition

Cathode-electrolyte reaction

KBR Failure Simulation (Chemical Decomposition) Chemical Electrochemical decomposition $\rho C_p \frac{\partial T}{\partial t} = \lambda \nabla^2 T + 0$ (q_{ohm}) *q_{chem}* Thermal profile with q_{chem} Thermodynamic Ohmic and 55 short-circuit 50 max(T) [deg C] 45 Prismatic cel 40 35 30 **20** single Li-ion cells 25 0.00 0.25 0.50 0.75 1.00 t/t_{max} **Effect of Chemical Decomposition on the Internal Temperature**

on a Nominal Li-ion Cell

Estimating Temperature for Predicting Failure

- Finite Element simulations is used to identify important precursors
- Temperature is easy and cheaper to monitor
- A BMS with internal temperature monitoring and a physics-based estimation algorithm could be used for failure prediction

Battery Prognostics Model Based Architecture

Battery Thermal Prognostics Modifying the Model for Temperature

Two State Estimation Blocks can estimate Cell Voltage, Discharge Time, Cycle Life, and Temperature Thresholds

Data pre-processing is needed for accurate estimation

Preliminary Results for EOD Estimation

Applying Prognostics Algorithm on a Short Test Flight Profile

The Distribution of the End-of-Discharge Estimation shows that the Algorithm is working correctly.

Preliminary Results for Temperature Estimation

Applying Prognostics Algorithm on a Short Test Flight Profile

Temperature variation on a nominal and fresh cell is not significant

Summary

- Failure modes identification
- Finite Element Modeling of Failure modes
- Identification of temperature as a failure precursor
- Coupled a thermal model with battery prognostics algorithm
- Voltage and temperature estimation for a single cycle

Next Steps

- Estimating temperature over cycle life
- Estimating temperature for off-nominal behavior