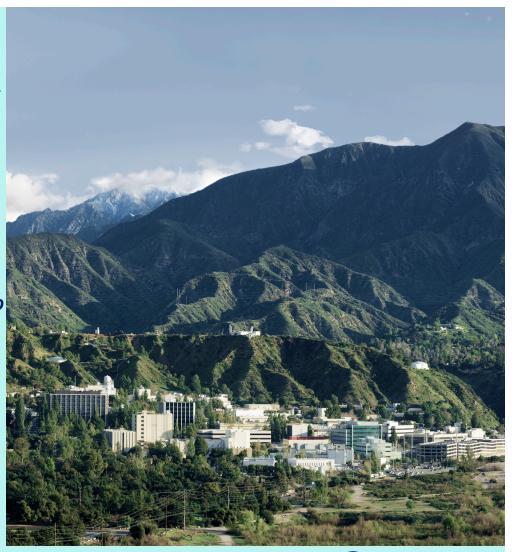


Performance Assessment of Prototype Lithium-Sulfur Cells from Oxis Energy

Kumar Bugga, John-Paul Jones, Simon Jones, Charlie Krause and Jasmina Pasalic Jet Propulsion Laboratory, Pasadena, CA 91109 and

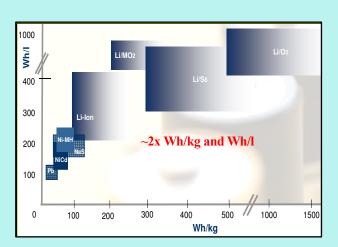
Mary Hendrickson and Edward Plichta

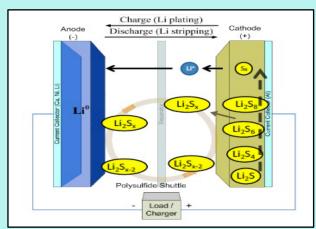

US Army RDECOM CERDEC CP&I, Aberdeen Proving Ground, MD

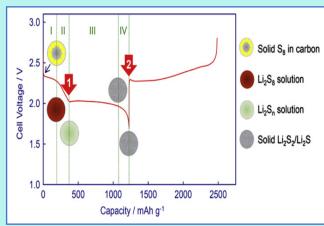
and

David A. Ainsworth and Guillaume De Forton

OXIS Energy, Oxford Shire, OX14 3DB, UK.

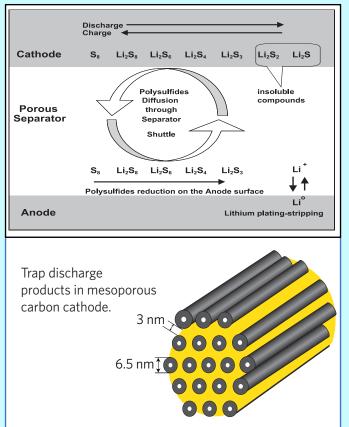

NASA Battery Workshop Huntsville, AL November 27-29, 2018




Li-S Cell Chemistry

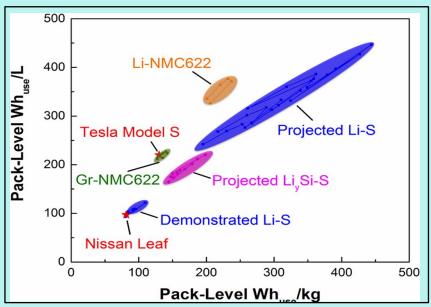
- High capacity of 1670 vs. <300 mAh/g for Li-ion cathodes;
- High theoretical Sp. energy of 2567
 vs ~1200 Wh/kg for Li-ion

Technology Challenges

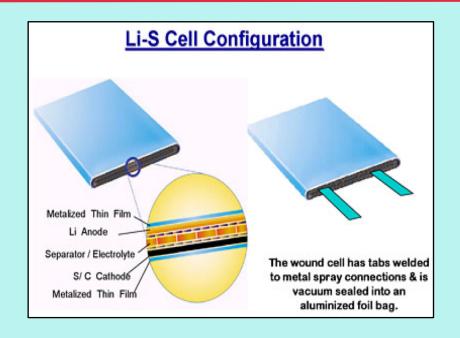


- Intermediate discharge products (polysulfide species) are soluble in most organic electrolyte systems
- Polysulfide species can react with anode forming redox shuttle
- Affects cycle life and coulombic efficiency and increases anode interfacial impedance
- Essential to extract full capacity from cathode

Approaches to Mitigate Sulfide Shuttle


Component	Problems	Strategies Adopted
S cathode	Polysulfide dissolution- and Shuttle	Hierarchally-porous carbon (HPC) host
		Immobilize polysulfide in carbon host matrix
		Use sulfide (discharge product) as cathode
	Sulfur Passiavtion	Use sulfide (discharge product) as cathode
Li anode	Poor cyclabaility and dendrites	Coat with protecting layer (polymer or solid electrolyte)
Electrolyte	Soluble sulfides affecting performance	Organic electrolyte with additives (e.g. LiNO ₃ , P ₂ S ₅)
		Ionic liquid electrolyte
		Solid-state electrolyte
Other components	Soluble sulfides affecting performance	Carbon, V ₂ O ₅ (MnO ₂) interlayers

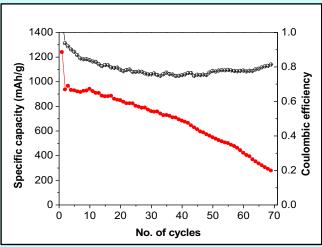
• Some of these approaches have shown improved cycle life, but only with low sulfur loadings (2-3 mg/cm²)



State of Art Li-S cells

- Low experimental energy density due to low sulfur loading (1-2 mg/cm²)
- High loading (7mg/cm²) --> 400 h/kg, which is the objective here

- Current developmental cells are pouch cells with 250-400 WH/kg.
- Higher Wh/kg will lower cycle life



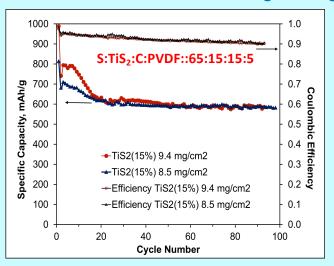
Design Considerations for a 400 Wh/kg Li-S cell

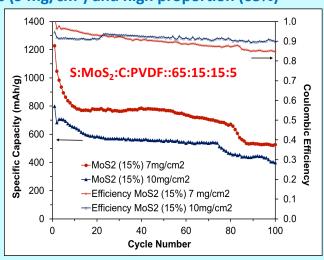
Cathode Loading

- Cathode loading in a Li-ion cell (nickel cobalt aluminum oxide, NCA):
 ~15 mg/cm², i.e., ~2.23 mAh/cm² or 8.9 mWh/cm² per side
- For 400 Wh/kg, i.e.,1.5 times the specific energy vs. Li-ion cells, i.e., 13 mWh/cm² per side.
 - With a voltage of 2.1 V for Li-S cell, this implies an areal capacity of ~6.2 mAh/cm² for the sulfur cathode.
 - With 800 mAh/g from sulfur (and with a composition of 65% sulfur), the required loading is 12 mg/cm².
- Almost all reports of Li-S cells in the literature describe performance of sulfur cathodes with a low loading of < 5mg/cm² (mostly 2-3 mg.cm⁻²) and/or with low proportion of sulfur in the cathode.
- Projected pack-level Wh/kg and Wh/l for a 100 kWh, 80 kW and 360 V Li-S battery with higher loadings (>8 mAh/cm² and 7 mg S/cm²) vs. estimated from demonstrated cell performance (~2.5 mAh/cm² and 2 mg S/cm²) (Gallagher et al JECS, 162 (6) A982-A990 (2015))
- Electrolyte content needs to be reduced to 4-5 ml/g (currently 9-13 ml/g of S)

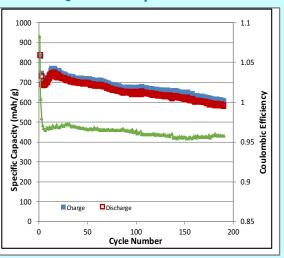
S: C: PVDF (55: 40:5) 6 mg/cm² 1.0MLiTFSI+ DME (Dimethoxy Ethane) +DOL (Dioxolane) (95:5) with a Carbon Cloth

- Lower capacity and utilization of sulfur in thicker cathode
- With denser sulfur cathodes, more polysulfides are expected to dissolve

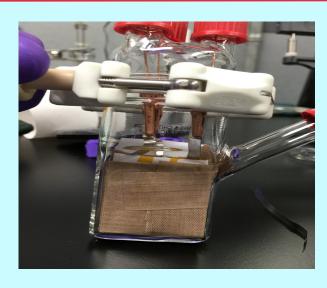




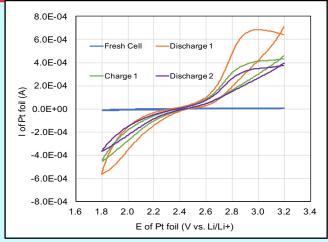
Long-Life and High Energy Li-S Battery for NASA and DoD Applications

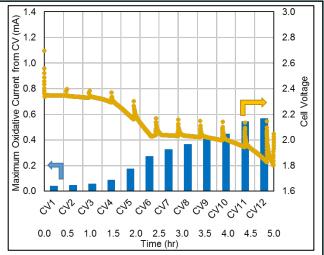

(Funded by US Army- CERDEC)

Sulfur Cathodes with High loadings (9 mg/cm²) and high proportion (65%)


Area specific capacity is 8 mAh/cm² (3-4Xof Li-ion)

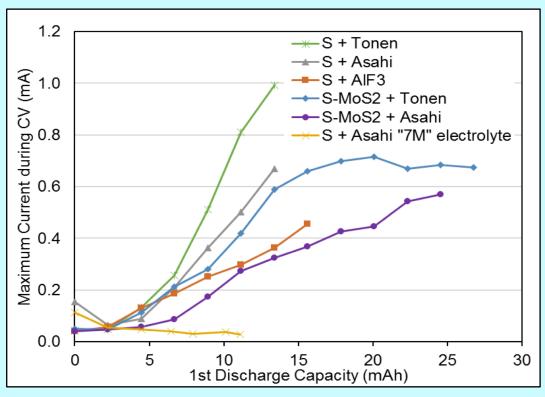
Our Approach:


- New sulfur cathodes with transition metal sulfide blends (MoS₂ and TiS₂) with sulfur cathode and/or with the coatings of metal sulfides.
- Ceramic-coated separators as Polysulfide Blocking Layers to minimize the crossover of polysulfides
- Protected Li anode with a thin coating of AIF3 by Atomic Layer Deposition or various polymer electrolyte coatings
- New electrolytes which minimize polysulfide-related shuttle effects and promote sulfur kinetics (Solvated or concentrated electrolytes)



Four-Electrode Li-S cells for Polysulfide Estimation

 Four-electrode glass prismatic cell to quantify polysulfides through cyclic voltammetry (right)



Comparison of Polysulfides with different separators/cathodes

- Polysulfides estimated from CV: S + Tonen > S + Asahi > S+MoS₂ + Tonen > S+MoS₂
 +Asahi > S + Asahi + 7M salt
- · Cycle life follows the inverse trend

Published in the J. Phys. Chem. Lett.

Status of Sion Power Li-S Technology

Configuration: Prismatic

Length: 55 mm (top flanged folded)

Width: 37 mm

Thickness: 11.5 mm

Weight: ~16 g

Electrical Specifications: Nominal Voltage: 2.15V

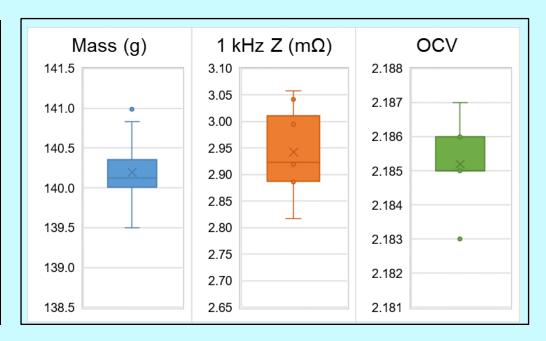
Maximum Charge Voltage: 2.5V Minimum Voltage on Discharge: 1.7V Nominal Capacity @ 25°C: 2.5 Ah @ C/5 Maximum continuous discharge rate: 2C

Maximum charge rate: C/5 Specific Energy: 350 Wh/kg Energy Density: 320 Wh/l Cell Impedance: 25 m Ω

TABLE I. USABC Long Term Goals for Advanced Batteries for EVs vs Sion Power Baseline Battery.

Parameter (Units) of fully burdened system	USABC Long Term Goals	Sion Power Battery
Power Density (W/L)	600	1500
Specific Power-Discharge, 80% DOD/30sec (W/kg)	400	1500
Energy Density (Wh/L)	300	320
Specific Energy (Wh/kg)	200	350
Specific Power/Specific Energy Ratio	2:1	4:1
Normal Recharge Time	3 to 6 hours	6 to 8 hours
Continuous Discharge in 1 hour (% of rated capacity)	75	90
Cycle Life – 80% DOD (Cycles)	1000	30 - 60
Operating Environment (°C)	- 40 to +85	- 40 to +50

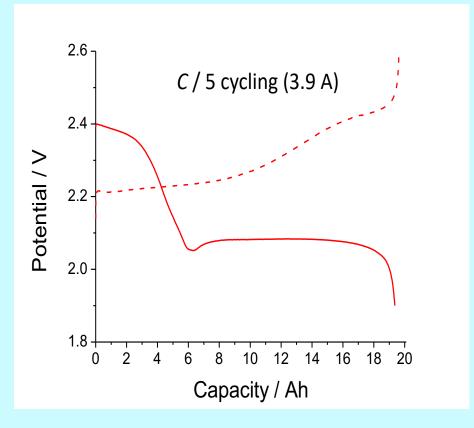
• Developed protective coating for Li anode and are now interested in Li-MOx chemistries



Oxis Energy: "Ultralight" pouch cells

Ultra Light POA0343 cells (300 Wh/kg)

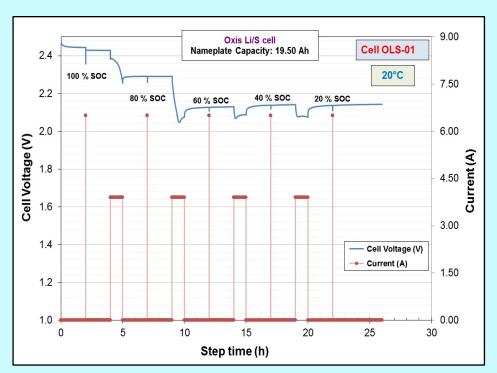
Cell ID	Mass (g)	1 kHz Z (mΩ)	OCV
AH260917-1	140.131	3.042	2.187
AH260917-2	139.500	3.001	2.185
AH260917-3	140.195	2.995	2.185
AH260917-4	140.105	2.920	2.185
AH260917-5	140.832	3.058	2.186
BM260917-1	139.809	2.817	2.185
BM260917-2	140.179	2.886	2.183
BM260917-3	140.078	2.888	2.185
BM260917-4	140.115	2.893	2.185
BM260917-5	140.989	2.927	2.186
Average:	140.193	2.943	2.185
Stdev:	0.412	0.074	0.001


Oxis Energy: "Ultralight" pouch cells

Self-discharge during stand test at 20 °C

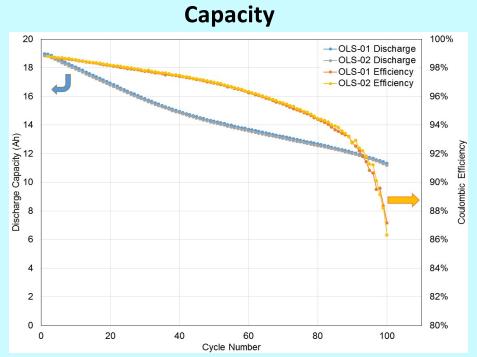
Characteristic	OLS-03	OLS-04
Initial capacity (Ah)	19.08	19.01
Capacity after 1 week (Ah)	17.03	16.75
Self-discharge (%)	10.8%	11.9%

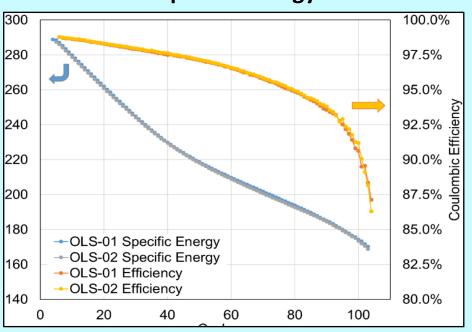
 ~11% self-discharge after 1 week standing at full charge, 20 °C



~300 Wh/kg on first cycle

DC impedance at 20 °C

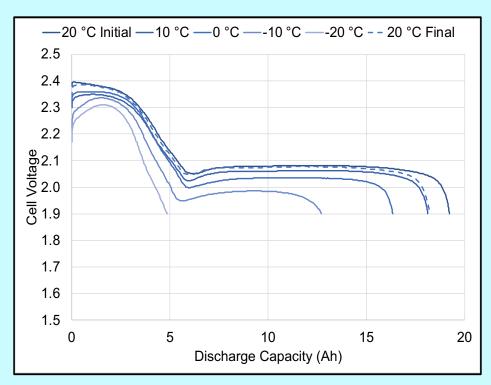

C / 3 pulses (6.5 A)

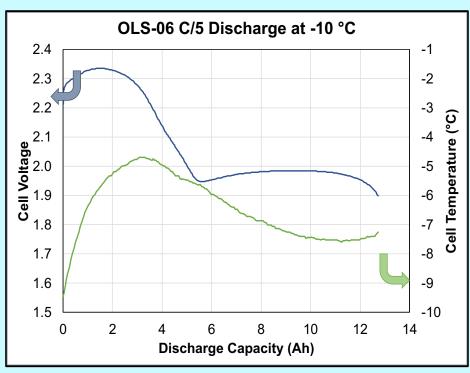


Cycling performance at 20 °C

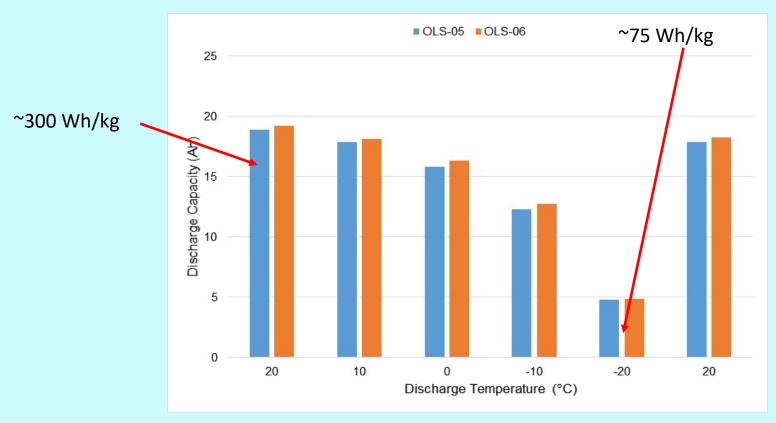
3.9 A cycling (C/5)

Specific Energy


Fade ~70 mAh/cycle, 0.4%

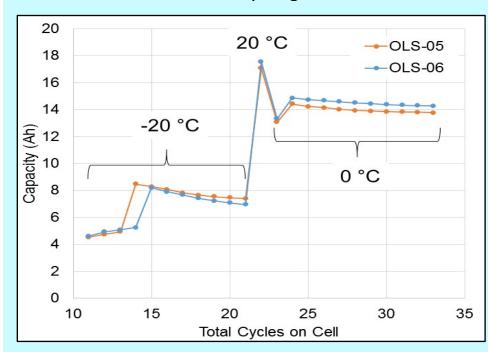

~170 Wh/kg after 100 cycles

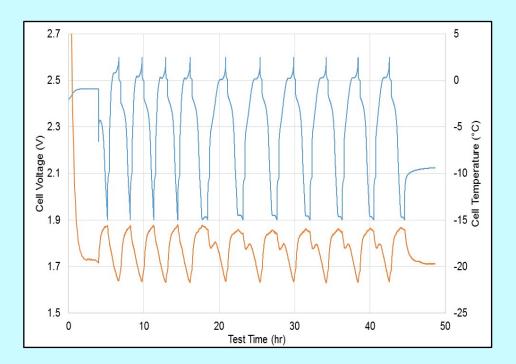
Variable-temperature discharge capacity


- Lower capacities at low temperature (reduced plateau)
- Noticeable heat dissipation at low temperatures

Variable-temperature discharge capacity

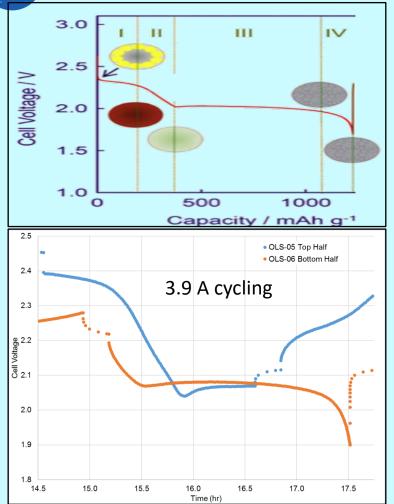
3.9 A cycling (C/5)

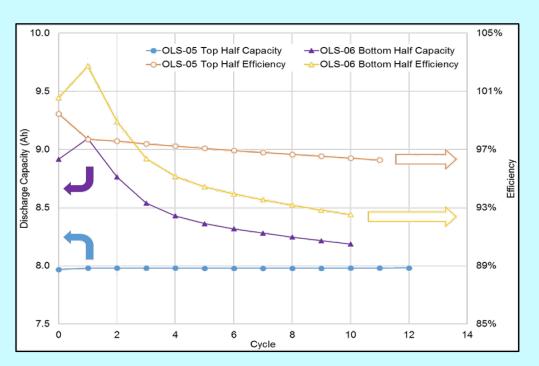




Variable-temperature cycling and thermal profile

3.9 A cycling

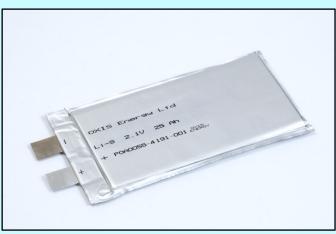




NASA

Variable-DoD Cycling

- Capacity is very flat for "top half" cycling due to discharge energy limits
- Efficiency drops rapidly for "bottom half" cycling


Conclusions

- Metal sulfide incorporation and/or separator modification can improve sulfur utilization and cycling performance in laboratory cells.
- High area specific capacities are realized in sulfur cathode blended with metal sulfides, which can lead higher specific energies
- Oxis 19.5 Ah pouch cells have been characterized across a range of operating conditions
 - Initial specific Energy is 300 Wh/kg
 - Specific energy after 100 cycles is 170 Wh/kg
 - 100 cycles at 20°C,
 - Low DC impedance
 - Low temperature performance is moderate
 - "Top" vs. "bottom" cycling (varying insoluble species: S₈ vs. Li₂S)
- Planning to procure the next version (350-400 Wh/kg) Oxis Energy cells for our evaluation

Oxis Next Gen Cells

Key Features

- ♦ Extremely lightweight: >400 Wh/kg already proven
- Safe
- ♦ Full 100% Discharge Capability
- ♦ High Power type for Aviation and Automotive
- High Energy type for HAPS
- Bespoke cell sizes available

Ultra Light Cell Technology Specifications

T	High Davis	III-b Farani
Type	High Power	High Energy
Part Number	POA0343	POA0412
Availability	Evaluation Sample	
Operating Voltage (V)	1.9-2.6	
Nominal Voltage (V)	2.1	
Typical Capacity (Ah) 0.2C discharge at 20°C to 1.9V	19.5	14.7
Gravimetric Energy (Wh/kg)	300*	400**
Max. Peak Discharge (C) <30s, 50% Soc, 20°C	6	3
Max. Continuous Discharge (C)***	2	1
Max. Charge Rate (Hours)	4	
Cycle Life (Cycles) 100% DoD****, 80% BoL	80-100	60-100
Cycle Life (Cycles) 80% DoD, 60% BoL	~200	
Operating Temperature (°C)*****	0 to 30	
Storage Temperature (°C)	-30 to 30	
Pouch Format (mm) Length x width x thickness	151x118x10.5	145x78x10
Tab Dimensions (mm) Length x width x heigth	27x20x0.1	
Cell Weight (g)	137	85
Abuse Safety Testing	In-House to IEC62133 standard	

Acknowledgements

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The authors acknowledge the funding support of Army (CERDEC).

Disclaimer

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

