OPTIMAL SENSOR PLACEMENT FOR FAULT DIAGNOSIS AND ISOLATION IN AEROSPACE BATTERY PACKS

2020 NASA AEROSPACE BATTERY WORKSHOP

DR. MATILDE D'ARPINO RESEARCH SCIENTIST CENTER FOR AUTOMOTIVE RESEARCH

PROF. GIORGIO RIZZONI AND MS. YE CHENG DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

November 17, 2020

Outline

- 1. Motivation
- 2. Intrinsic properties of SP and PS battery pack configurations
- 3. Methodology description and single cell example
- 4. Analysis of traditional sensor set
- 5. Performing sensor placement to find minimal sensor set that can achieve complete fault isolation
- 6. Conclusions

More Electric Aircraft

Electric/Hybrid commercial aviation

UAV/UAM

2

MOTIVATION

NASA ULI Electric Propulsion: Challenges and Opportunities

Felder, J.L., NASA Electric Propulsion System Studies, Report No. GRC-E-DAA-TN28410, 2015, Available at www.nasa.gov.

Distributed electric propulsion is a leading architecture for measurable CO₂ reduction on large commercial aircraft - regional, single aisle, and twin aisle.

- Two turbo-generators to supply electrical power to distributed motors
- Eight motors with embedded power electronics
- Integrated thermal management system
- Battery energy management can be charge-depleting or charge-sustaining; battery thermal management system is separate from powertrain

Challenge 1 System Integration

Success Criteria: Vehicle energy and CO₂ >20% improvement over existing solutions

Challenge 2 Ultra-High Power Density Electric Machine and Power **Electronics**

Success Criteria: Electric machines > 14 kW/kg, power electronics > 25 kW/kg, efficiency > 99%, bus voltage up to 2kV without partial discharge

Challenge 3 Energy Storage

Success Criteria: Power density and reliability (desired 450 Wh/kg)

Challenge 4 Advanced Control of Onboard Electrical Power Systems Success Criteria: System remains stable at 20% voltage sag and 200% step load change

Challenge 5 Research Infrastructure for More Electric Aircrafts Success Criteria: Sub-system and component prototyping and testing at elevation – 2 kV, 1 MW, 20 kRPM drive tests

Research on thermal management system design is integrated in every as

Perullo, C., Alahmad, A., Wen, J., D'Arpino, M., Canova, M., Mavris, D. N., & Benzakein, M. J. (2019). Sizing and Performance Analysis of a Turbo-Hybrid-Electric Regional Jet for the NASA ULI Program. In AIAA Propulsion and Energy 2019 Forum (p. 4490).

NASA ULI Electric Propulsion: Challenges and Opportunities

Design of a 2MWh battery pack for the 600nmi. 30% climb – 20% cruise mission profile.

Cell	Cell 1	Cell 2	Cell 6	Cell 7	Cell 8	Cell 9	
Format	18650 Cyl	lindrical		Pouch			
Chemistry	LMO	NMC	NMC	Li-Si	Li-Metal	Li-S	
Capacity assessment [Ah] (@1C, 23°C)	3.25	2.85	10.87	10.24	(19.40)	(14.7)	
Energy Density assessment [Wh/kg] (@1C, 23°C)	237	215	224	336	(478)	(363)	
Experimentally Tested?	Yes			No	No		
ΔSoC_{avail}	(10-95)%						
$m_e n_e$ - Total Cell Number	176,472 (516s x 342p)	196,560	51,816	54,752	27,608	66,990	
	((504s x 390p)	(508s x 102p)	(472s x 116p)	(476s x 58p)	(770s x 87p)	
Max C-rate (discharge)	2.20	(504s x 390p) 2.26	(508s x 102p) 2.16	(472s x 116p) 2.15	(476s x 58p) 2.28	(770s x 87p) 2.06	
Max C-rate (discharge) Heat Generation (kW) (Peak/Average)							
Heat Generation (kW)	2.20	2.26	2.16	2.15	2.28		

Sergent, A., Ramunno, M., D'Arpino, M., Canova, M., & Perullo, C. (2020). Optimal Sizing and Control of Battery Energy Storage Systems for Hybrid Turboelectric Aircraft (No. 2020-01-0050). SAE Technical Paper.

Definition of design optimization problem for large scale battery packs

Assumption: cell selection and pack sizing has already taken place (see presentation on Thursday 'A Comparative Study of Li-ION BATTERY TECHNOLOGIES FOR HYBRID-ELECTRIC REGIONAL AIRCRAFT APPLICATIONS'

Basic Unit Design and Sizing

nSmP mPnS Design parameters

- 1. Architecture SP vs. PS in different modular configurations.
- 2. Type, number and location of **sensors**
- **3. Balancing** (if passive, answer is unique for each architecture, if active there are more options)
- 4. Protection device sizing and placement

Design parameters

- **1.** Architecture SP, PS and combinations.
- 2. Type, number and location of **sensors**
- 3. Protection device sizing and placement

Design objectives: \$ cost, Diagnostic capabilities, Reliability, Adaptability to component variation,

Battery pack configurations

NASA ULI Hybrid turbo electric configuration require a large number of cells (10-100 of thousands of cells) interconnected together to access to the additional fuel burn reduction (up to 20% compared to turboelectric)

There are two main configurations for battery pack modules (SP and PS)

- 1. Explore the intrinsic properties of battery module architectures (SP and PS)
- 2. Effects of current and voltage unbalance considering
 - 1. Capacity and resistance unbalance
 - 2. Short circuit (this will affect the sizing/selection of protective devices)
- 3. Sensor requirements for faults detectability and isolabilily (traditional vs optimal) (this will affect the selection of sensor set)

Cai, Y., Cancian, M., D'Arpino, M., & Rizzoni, G. (2019, July). A generalized equivalent circuit model for large-scale batter with cell-to-cell variation. In 2019 IEEE National Aerospace and Electronics Conference (NAECON) (pp. 24-30). IEEE.

INTRINSIC PROPERTIES OF SP AND PS

Battery modeling - Two architectures are commonly considered

Battery plant model consists of:

- 0th order equivalent circuit models (ECMs)
- lumped-parameter thermal models
- The KCL/KVL.

nSmP

Ideal conditions	nSmP	mPnS
<pre># voltage sensors</pre>	n	$n \times m$
# current sensors	$n \times m$	т
# balancing circuits	n	$n \times m$
# fuses/ protections	$n \times m$	т

Parallel of series connected cells

KCL & KVL for mPnS $I_{ij} = I_j = I_j^M \sum_{j=1}^m I_j^M = I_{BP} \quad \forall i = 1 \cdots n$ $\sum_{i=1}^n V_{i1} = \cdots = \sum_{i=1}^n V_{ij} = \cdots = \sum_{i=1}^n V_{im} =$ $V_j^M = V_{BP} \quad \forall j = 1 \cdots m$

KCL & KVL for nSmP $\sum_{j=1}^{m} I_{ij} = I_i^M = I_{BP} \quad \forall i = 1 \cdots n$ $V_{i1} = \cdots = V_{ij} = \cdots = V_{im} = V_i^M \quad \forall i = 1 \cdots n$ $\sum_{i=1}^{n} V_i^M = V_{BP}$

 I^{M} = module current

 V^M = module voltage

Battery Pack Architecture comparison using Bipartite Graph

Bipartite Graph is a graphical representation of a model and it is used to analyze the¹⁰ connection between known variables, unknown variables, and faults. Variables in a green box are equal to Thin Line connects variable those are always equal. each other in ideal case (if the cells Think Line represents a sum (constraint). The sum is always true, but the are equals and have the same element of the summation can be unbalanced due to parameters variation. temperature). I_{BP} BP nSmPmPnS C_{BP} Series of parallel I_{M2} Parallel of series I_{M1} cells connected cells I_{M1} М2 C_1 C_2 I_{22} (cell₁₁ cell₂₁ (cell₁₁ cell₁₂ cell₁₂ I_{BP} (cell₂₂ cell₂₁ cell₂₂ I_{BP} 2 I_{M1} Module Module I_{11} 12 V_{22} V_{21} Module I_{M2} Module 1 I_{M1} Module V_{12} V_{M1} I_{11} I₁₂ r+ V_{11} $\square C_2$ V_{12} V_{BP} I_{M2} (V_{M1}) V_{M2} V_{M1} V_{M2} V_{F} I_{21} I_{22} I_{21} I_{22} Module 2 /м1 + V_{M2} V_{M2} V_{22} V_{21} V_{22} C_{BP} Module 1 Module 2 V_{BP} V_{BP}

Battery Pack Architecture comparison using Bipartite Graph

Two commonly used battery pack topologies

The fault or parameter unbalance of one cell is kept inside the module (positive), however the entity of the voltage/current imbalance is higher (negative)

The fault or parameter unbalance of a cell affects all the pack (negative), however the entity of the voltage/current imbalance is reduced (positive)

- Which architecture will need less expensive sensor set to monitor cell condition?
- When there is an unhealthy cell, which architecture will need less sensors to detect and isolate the unhealthy cell?

Use of Structural Analysis methods as sensor placement tool.

METHODOLOGY DESCRIPTION

Definition of Structural Analysis and example for single cell model

14 — Structural Model					
Equations	Unknown variables				
	<i>I</i> ₁₁	<i>V</i> ₁₁	V_{oc11}	T_{11}	SoC ₁₁
e_1	1	1	1	0	0
<i>e</i> ₂	1	0	0	0	1
<i>e</i> ₃	0	0	1	0	1
<i>e</i> ₄	1	0	0	1	0
Incidence Matrix					

- Structural analysis investigates the model constraint structure, i.e., the connections between known variables, unknown variables, and faults.
- The connections can be represented through **bipartite graphs** or **incidence matrices**.

Toolbox/MATLAB

[1] Zhang, J., Yao, H., & Rizzoni, G. (2017). Fault diagnosis for electric drive systems of electrified vehicles based on structural analysis. *IEEE Transactions on Vehicular Technology*, 66(2), 1027-1039.

[2] Rahman, B. M. (2019). Sensor Placement for Diagnosis of Large-Scale, Complex Systems: Advancement of Structural Methods (Doctoral dissertation, The Ohio State University).

15

Dulmage-Mendelsohn (DM)-Decomposition is used to evaluate the analytical redundancy (AR) of a structural model. The equations of the models are divided in classes:

- Under-determined M⁻ (AR<0) (e.g. I do not have enough eq.s to solve this part of the model, I need to transform some of the unknown variables in known variables by adding sensors)
- Just-determined M⁰ (AR=0) (e.g. I do have just enough eq.s to solve this part of the model)
- Over-determined M⁺ (AR>0) (e.g. I do have enough eq.s to solve this part of the model and I have some extra eq.s that I can use for diagnosis methodologies)

(Example)

Analytical redundancy (AR): The number of unknown variables minus the number of equations Minimum structurally overdetermined (MSO) set: An over-determined set of model equations such that its AR= 1.

Krysander, M., Åslund, J., & Nyberg, M. (2007). An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis. *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38*(1), 197-206.

Definition of Structural Analysis – example single cell

16

possible sensor positions: $\{I_{BP}, I_{11}, V_{11}, T_{11}\}.$

Plant equations with faults:
(a single cell is called *cell* 11, *i* = 1, *j* = 1)

$$e_1: V_{11} = V_{oc11} - R_{11}(I_{11} + I_{scI,11})$$

 $e_2: \frac{dSoC_{11}}{dt} = -\frac{I_{11} + I_{scI,11}}{Q}$
 $e_3: V_{oc11} = f(SoC_{11})$
 $e_4: mc_p \frac{dT_{11}}{dt} = R_{11}(I_{11} + I_{scI,11})^2 - Q_{TMS_1}$
 $e_5: I_{scI,11} = \left(\frac{V_{11}}{R_{scI}}\right) f_{scI,11}$
 $e_6: I_{scE,11} = \left(\frac{V_{11}}{R_{scE}}\right) f_{scE,11}$
 $e_7: I_{11} = I_{BP} + I_{scE,11}$

Sensor equation with faults:

 $y_u = u + f_{y_u}$

The set of short circuit faults : $\{f_{scl,11}, f_{scE,11}\}$. The set of sensor faults: depends on what sensors are added to the battery system.

Definition of Structural Analysis – example single cell

If all the faults are included in the M+ (over-determined part of the model) but same equivalence class (gray area) -> all the faults can be detected, but not isolated If all the faults are included in the M+ (over-determined part of the model) -> all the faults can be detected and uniquely isolated

Definition of Structural Analysis – example single cell

If all the faults are included in the M+ (over-determined part of the model) but same equivalence class (gray area) -> all the faults can be detected, but not isolated If all the faults are included in the M+ (over-determined part of the model) -> all the faults can be detected and uniquely isolated

ANALYSIS OF TRADITIONAL SENSOR SET

Type of faults we want to diagnose:

1. internal short circuit (each cell is modeled with an internal short circuit fault signal in it)

20

- 2. external short circuit (an external short circuit fault signal is modeled in each module)
- 3. Sensor faults (depending on the sensor set)

Can a traditional sensor set diagnose/isolate internal and external short circuit faults as well as sensors (BMS) faults?

Traditional sensor set for the nSmP topology battery pack:

- a load current sensor to measure I_{BP} .
- cells that are in parallel share a voltage sensor (**each module has a voltage sensor**).
- cells that are in parallel share a temperature sensor (each module has a temperature sensor)

Cheng, Y., D'arpino, M., & Rizzoni, G. (2020). Structural Analysis for Fault Diagnosis and Sensor Placement in Battery Packs. *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, in preparation.*

Can a traditional sensor set diagnose/isolate internal and external short circuit faults as well as sensors (BMS) faults?

Traditional sensor set for the mPnS topology:

- a load current sensor to measure *I*_{BP}.
- each cell has its own voltage sensor.
- cells that are in series share a single temperature sensor (each module has a temperature sensor)
 Isolability matrix for '3P3S' (integral causality)

Cheng, Y., D'arpino, M., & Rizzoni, G. (2020). Structural Analysis for Fault Diagnosis and Sensor Placement in Battery Packs. *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, in preparation.*

Diagnostic property of two battery pack topologies with traditianl sensor set (summary)

Can a traditional sensor set diagnose/isolate internal and external short circuit faults as well as sensors (BMS) faults?

nSmP Series of parallel cells

> *m*P*n*S Parallel of series connected cells

23

# sensors: 1 pack current + <i>n</i> module temperatures + <i>n</i> module voltages (positive)	# sensors: 1 pack current + m module temperatures + $n \times m$ cell voltages (negative)
Detectability: all the faults can be detected (positive)	Detectability: all the faults can be detected (positive) Module fault isolability: isolate which fault is happening and in which
Module fault isolability: isolate faults between	module, except battery pack current sensor fault and the external
module (positive)	short circuit fault (positive)
Cell fault isolability: not allow for isolating which cell happens to be faulted in the module (negative)	Cell fault isolability: allow for isolating which cell happens to be faulted in the module, except the temperature sensor fault is not isolable from the internal short circuit faults. (positive)

PERFORMING SENSOR PLACEMENT TO FIND MINIMAL SENSOR SET THAT CAN ACHIEVE COMPLETE FAULT ISOLATION

Possible sensor locations and types

Type of fault that we want to diagnose: internal and external short circuit, and sensor faults (sensor faults depend on the sensor set added to the system.)

mPnS

(*m* parallel of *n* series cells)

Locations: cell, module, pack Types: current, voltage or temperature

All the possible combination of sensor set are considered

Optimal Sensor Placement for Battery Packs

26 Goal: complete detection/isolation of internal and external short circuit conditions as well as sensors (BMS) faults, without cost constraints

Series of parallel cells

The minimum sensor set:

Module level: Each cell should be equipped with a sensor. It could measure current or temperature. Preferred $n \cdot m$ cell current measurement (negative) **Pack level:** 2 duplicate sensors to measure battery pack current. (same)

The addition of voltage sensors doesn't help.

Parallel of series connected cells

The minimum sensor set:

Module level: n - 1 cells in each module should be equipped with a sensor. It could measure voltage or temperature. Preferred $(n-1) \cdot m$ cell voltage measurement (positive) **Pack level:** 2 duplicate sensors to measure battery pack current. (same)

The addition of current sensors doesn't help.

Cheng, Y., D'Arpino, M., & Rizzoni, G. (2020). Structural Analysis for Fault Diagnosis and Sensor Placement in Battery Packs. arXiv preprint arXiv:2008.10533.

Conclusions

٠

A comparative analysis between SP and PS has been carried out

PS seems to have several advantages due to the fact that the entity of the fault or imbalance in case of malfunction is *n* times smaller than SP, however the malfunction is spread across the whole pack

27

• A methodology for the optimal sensor set has been proposed and compared with traditional sensor set. The team is performing further economic analysis.

CONTACT *car.osu.edu*

Dr. Matilde D'Arpino Research Scientist darpino.2@osu.edu

Prof. Giorgio Rizzoni (rizzoni.1@osu.edu) Ye Cheng (cheng.1316@osu.edu)

Thank You for Your Kind Attention!

The authors thank the NASA ULI program for sponsoring this research (GRANT number NNX17AJ92A).