OPTIMAL DESIGN AND CONTROL OF BATTERY ENERGY STORAGE SYSTEMS FOR HYBRID PROPULSION AND MULTI-SOURCE SYSTEMS FOR AEROSPACE APPLICATIONS

2019 NASA AEROSPACE BATTERY WORKSHOP

DR. MATILDE D'ARPINO SENIOR RESEARCH ASSOCIATE CENTER FOR AUTOMOTIVE RESEARCH

PROF. MARCELLO CANOVA ASSOCIATE PROFESSOR DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

November 20, 2019

CENTER FOR AUTOMOTIVE RESEARCH – BATTERY RESEARCH

THE OHIO STATE UNIVERSITY

- 1. Introduction to the Center for Automotive Research (CAR)
- 2. Potential benefits and issues of Li-ion batteries in aerospace applications
- 3. Numerical strategies for co-optimization of design and control for multi-source systems
- 4. Case study: NASA ULI Electric Propulsion Challenges and Opportunities
 - 1. Program introduction
 - 2. Cell characterization and modeling
 - 3. design and energy management for hybrid turboelectric aircraft for commercial aviation via dynamic programming

POTENTIAL BENEFITS LITHIUM-ION ENERGY STORAGE SYSTEMS

THE OHIO STATE UNIVERSITY CENTER FOR AUTOMOTIVE RESEARCH

- System efficiency decoupling the energy generation from the load;
- 2. Emissions enabling optimal control of fuel-based power generation;
- 3. Management of Uncontrollable Sources - e.g. renewable sources and regenerative braking;
- Controllability & Power Quality facilitating the management of complex multi-source systems;
- 5. Reliability at the System Level providing back up;
- 6. Weight 10 kg weight reduction for a aircraft will result in the saving of 17,000 tonnes of fuel and 54,000 tonnes of carbon dioxide emission per year for all air traffic worldwide (DOI: 10.1049/iet-est.2016.0019)
- 7. Delay System Expansion / Investments;
- 8. Flexibility & Modularity.

Lithium-ion batteries represents a more sustainable and cost-effective energy solutions when compare to other energy storage devices.

CHALLENGES IN DESIGN OF LITHIUM-ION BATTERY PACKS FOR STATIONARY AND PROPULSIVE APPLICATIONS

THE OHIO STATE UNIVERSITY

CENTER FOR AUTOMOTIVE RESEARCH

Energy Management Prospective:

- cost (initial, operational, maintenance, replacement);
- 2. high energy/power density battery cells (especially for propulsive and space);
- 3. charging/discharging rate limits (fast charging capabilities);
- 4. weight overhead of electronics, packaging, and cooling required for operating lithium-ion batteries.

Cost Trends for Lithium-based EV Batteries

Source: US Department of Energy Vehicle Technology Office Annual Merit Review (2018)

System Integration Prospective:

5. SAFETY;

- reliability & durability of cell performance over time and capability of prognosis and diagnosis;
- 7. complexity of large-size high-voltage battery pack (aviation and stationary).

LITHIUM-ION BATTERY IN AEROSPACE APPLICATIONS

The Ohio State University

CENTER FOR AUTOMOTIVE RESEARCH

Satellites

Moon/Mars exploration

Launch vehicles

More Electric Aircraft

Electric/Hybrid commercial aviation

UAV

Sources: nasa.gov; safran-group.com

©, The Ohio State University, 2019

LITHIUM-ION BATTERY IN AEROSPACE APPLICATIONS

Sources: nasa.gov; safran-group.com

©, The Ohio State University, 2019

DOI: 10.1109/BCAA.2002.986382 doi.org/10.1016/j.electacta.2018.02.020

LITHIUM ION BATTERY TECHNOLOGIES

THE OHIO STATE UNIVERSITY

CENTER FOR AUTOMOTIVE RESEARCH

	Lithium Iron Phosphate	Lithium Manganese Oxide	Lithium Titanate	Lithium Cobalt Oxide	Lithium Nickel Cobalt Aluminum	Lithium Nickel Manganese Cobalt
Cathode chemistry descriptor	LFP	LMO	LTO	LCO	NCA	NMC
Specific energy (Wh/kg)	80-130	105-120	70	120-150	80-220	140-180
Energy density (Wh/L)	220-250	250-265	130	250-450	210-600	325
Specific power (W/kg)	1400-2400	1000	750	600	1500-1900	500-3000
Power density (W/L)	4500	2000	1400	1200-3000	4000-5000	6500
Volts (per cell) (V)	3.2-3.3	3.8	2.2-2.3	3.6-3.8	3.6	3.6-3.7
Cycle life	1000-2000	>500	>4000	>700	>1000	1000-4000
Self-discharge (% per month)	<1%	5%	2-10%	1–5%	2-10%	1%
Cost (per kWh)	\$400- \$1200	\$400-\$900	\$600-\$2000	\$250-\$450	\$600-\$1000	\$500-\$900
Operating temperature range (°C)	-20 to +60	-20 to +60	-40 to +55	-20 to +60	-20 to +60	-20 to +55

DOI: 10.1109/JESTPE.2016.2566583

Spider plots of prevalent battery technologies

<u>Note:</u> These are the **best case projections** (all chemistry problems solved, performance is not limiting, high volume manufacturing), and do not include extreme fast charge capability.

Source: US Department of Energy Vehicle Technology Office Annual Merit Review (2018) Irena report ISBN: 978-92-9260-038-9

©, The Ohio State University, 2019

BATTERY PACK DESIGN STRATEGIES FOR MULTI-SOURCE SYSTEMS

۲

•

Co-optimize design and control of **battery pack** given a mission profile:

DESIGN AND CONTROL OPTIMIZATION

Design and control optimization for HEV applications results in multi-objective optimization problem with a coupling between the physical system and the control algorithm

Problem complexity increases with size of design space

Coordination architectures to solve system level optimization:

Common objective functions to minimize:

- 1) Fuel consumption
- 2) Total cost (capital and lifetime)
- 3) Vehicle weight

DP typically used as benchmark solution for online control optimization strategies

- 1) Alternating: optimize plant first, then control (iterative method, weak/no coupling between parameters)
- Nested: control design nested within plant design (fully optimize control for every plant configuration, some coupling between parameters)
- 3) Simultaneous: plant and control optimized in one step (strong coupling between parameters)

E. Silvas, T. Hofman, N. Murgovski, L. Pascal Etman, and M. Steinbuch, "Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles," *IEEE Transactions on Vehicular Technology*, Vol. 66, No. 1, January 2017.

NASA ULI ELECTRIC PROPULSION: CHALLENGES AND OPPORTUNITIES

NASA ULI Electric Propulsion: Challenges and Opportunities

Felder, J.L., NASA Electric Propulsion System Studies, Report No. GRC-E-DAA-TN28410, 2015, Available at <u>www.nasa.gov</u>.

Distributed electric propulsion is a leading architecture for measurable CO₂ reduction on large commercial aircraft - regional, single aisle, and twin aisle.

- Two turbo-generators to supply electrical power to distributed motors
- Eight motors with embedded power electronics
- Integrated thermal management system
- Battery energy management can be charge-depleting or charge-sustaining; battery thermal management system is separate from powertrain

Challenge 1 System Integration

Success Criteria: Vehicle energy and CO₂ >20% improvement over existing solutions

Challenge 2 Ultra-High Power Density Electric Machine and Power Electronics Success Criteria: Electric machines > 14 kW/kg, power electronics > 25 kW/kg, efficiency > 99%, bus voltage up to 2kV without partial discharge

Challenge 3 Energy Storage

Success Criteria: Power density and reliability (desired 450 Wh/kg)

Challenge 4 Advanced Control of Onboard Electrical Power Systems Success Criteria: System remains stable at 20% voltage sag and 200% step load change

Challenge 5 Research Infrastructure for More Electric Aircrafts

Success Criteria: Sub-system and component prototyping and testing at elevation – 2 kV, 1 MW, 20 kRPM drive tests

Research on thermal management system design is integrated in every aspondent of the project.

Benefits of Battery Turboelectric Hybrid Aircrafts

Turboelectric Distributed Propulsion

Benefits:

- Enable new aero efficiencies
- Improve propulsion efficiency
- Freedom in engine design
- Enable Power Sharing between fans
- Degree of freedom in using residual thrust form the turboshaft

Challenges:

- High efficiency electric machine and power converters
- Weight -> increase energy density of the electric drive
- System integration

Distributed Series Hybrid Turboelectric

Benefits:

- As turboeletric solution
- Use battery as buffer ad peak shaving
- Optimize power split battery/turboelectric
- Improve dynamic stability of the electric bus Challenges:
- System integration
- Increase system complexity
- Weight -> increase energy density of the battery packs (cells and system integration
- Safety, reliability, and lifetime

Benefits of Battery Turboelectric Hybrid Aircrafts

Perullo, C., Alahmad, A., Wen, J., D'Arpino, M., Canova, M., Mavris, D. N., & Benzakein, M. J. (2019). Sizing and Performance Analysis of a Turbo-Hybrid-Electric Regional Jet for the NASA ULI Program. In AIAA Propulsion and Energy 2019 Forum (p. 4490).

Feasibility Analysis

Missions simulated in GT-HEAT with a **93% efficient electric powertrain**, ¹⁵ **no battery power limits, constant power split during climb and cruise**

solution with Distributed Energy Propulsion

Feasibility Analysis

Design of a 2MWh battery pack for the 600nmi. 30% climb – 20% cruise mission profile.

Cell	Cell 1	Cell 2	Cell 6	Cell 7	Cell 8	Cell 9		
Format	18650 Cyl	lindrical	Pouch					
Chemistry	LMO	NMC	NMC	Li-Si	Li-Metal	Li-S		
Capacity assessment [Ah] (@1C, 23°C)	3.25	2.85	10.87	10.24	(19.40)	(14.7)		
Energy Density assessment [Wh/kg] (@1C, 23°C)	237	215	224	336	(478)	(363)		
Experimentally Tested?			Yes		No	No		
ΔSoC_{avail}			(10-9	5)%				
ΔSoC_{avail} $m_e n_e$ - Total Cell Number	176,472 (516s x 342p)	196,560 (504s x 390p)	(10-9 51,816 (508s x 102p)	5)% 54,752 (472s x 116p)	27,608 (476s x 58p)	66,990 (770s x 87p)		
ΔSoC_{avail} $m_e n_e$ - Total Cell Number Max C-rate (discharge)	176,472 (516s x 342p) 2.20	196,560 (504s x 390p) 2.26	(10-9 51,816 (508s x 102p) 2.16	5)% 54,752 (472s x 116p) 2.15	27,608 (476s x 58p) 2.28	66,990 (770s x 87p) 2.06		
ΔSoC_{avail} $m_e n_e - Total Cell Number$ $Max C-rate (discharge)$ $Heat Generation (kW)$ $(Peak/Average)$	176,472 (516s x 342p) 2.20 672 / 66	196,560 (504s x 390p) 2.26 357 / 42	(10-9 51,816 (508s x 102p) 2.16 438 / 41	5)% 54,752 (472s x 116p) 2.15 330 / 24	27,608 (476s x 58p) 2.28 74 / 7	66,990 (770s x 87p) 2.06 -		
ΔSoC _{avail} m _e n _e - Total Cell Number Max C-rate (discharge) Heat Generation (kW) (Peak/Average) Efficiency [%] (Min/Average)	176,472 (516s x 342p) 2.20 672 / 66 88 / 97	196,560 (504 s x 390 p) 2.26 357 / 42 90 / 97	(10-9 51,816 (508s x 102p) 2.16 438 / 41 92 / 98	5)% 54,752 (472s x 116p) 2.15 330 / 24 94 / 98	27,608 (476s x 58p) 2.28 74 / 7 94 / 98	66,990 (770s x 87p) 2.06 -		

16

Design & Control Optimization Problem

Series/Parallel Battery-Hybrid Turboelectric with Distributed Propulsion

Design Factors:

- Cell chemistry
- Number of cells (S/P)

Control variables:

Electric power split

External Inputs:

- Mission profile (time, MN, altitude)
- Aircraft assembly (mass tracking)

Pack Design Objectives:

- Pack weight and volume
- Pack cost
- Operating costs (degradation and replacement)

Energy Management Objectives:

- Fuel burn over mission / total energy use
- Cost of total energy (fuel+electrical)
- Overall CO2 production

17

Modeling Overview

Model Architecture

Battery Cell/Pack Model - Overview

https://doi.org/10.2514/6.2019-4469

Model-Based Control Design Strategies

Causal energy management strategies:

• Use a reference signal and the *current* system output (example, SOC) to make a decision on the control input.

21

- Easy to implement, but suboptimal!
- Non-Causal energy management strategies (Dynamic Programming):

- Guaranteed optimal solution!
- *Require the knowledge of the future (backward algorithm).*
- Complexity grows exponentially with the number of control inputs and states (e.g., battery SOC).
- **Dynamic Programming (DP)** is a numerical method based on the Bellman's Optimality Principle
- The algorithm is based on a recursive process that uses a discretized version of the problem

DP Results 600nmi mission (ESS mass of 10,000kg and GED of 200Wh/kg, No Power Limits)

DP Results 600nmi mission (ESS mass of 10,000kg and GED of 200Wh/kg, with Power Limits)

24

Fuel burn reduction compared to the Turboelectric solution with Distributed Energy Propulsion

	_	Fuel	Burn	_	_	Battery Energy		
Mission	Setup	Mass [kg]	Reduc. [%]	SOC(t ₀) [%]	SOC(<i>t_f</i>) [%]	Disch. [kWh]	Ch. [kWh]	Net [kWh]
Length:	No ESS	1413	-	-	-	-	-	-
600 nmi Climb: 13.4 min	27 Climb, 18 Cruise Rule based control	1358	3.9	95	11	1683	0	1683
Cruise: 30 kft	DP w/o Limits Optimal control	1265	10.5	95	10	4210	2511	1700
U.8 MN	DP w/ Efest Optimal control	1339	5.2	95	10	1634	0	1634*

(*) Difference due to "efficiency" related to when (SOC) / how (magnitude) power is used and corresponding resistance.

25

Fuel burn reduction compared to the Turboelectric solution with Distributed Energy Propulsion

	_	Fuel	Burn	_	-	Battery Energy		
Mission	Setup	Mass [kg]	Reduc. [%]	SOC(t ₀) [%]	SOC(<i>t_f</i>) [%]	Disch. [kWh]	Ch. [kWh]	Net [kWh]
Length:	No ESS	1413	-	-	-	-	-	-
600 nmi Climb: 13.4 min	30 Climb, 20 Cruise Rule based control	1273	9.9	95	10	1758	0	1758
Cruise: 30 kft	DP w/o Limits Optimal control	1176	16.8	95	10	4275	2517	1758
0.8 MN	DPM w/ Efest Optimal control	1258	11.0	95	10	1657	0	1657*

(*) Difference due to "efficiency" related to when (SOC) / how (magnitude) power is used and corresponding resistance.

Design/Control Optimization of Hybrid Turboelectric Generator System - Next Steps

- Perform analysis considering multiple factors:
 - 1. Evaluate impact of different cell chemistries
 - 2. Evaluate impact of battery thermal model for dynamic evaluation of the **power limits**, **thermal management** analysis and **degradation** estimation
 - 3. Consider different **climb rate** and mission profiles
 - 4. Consider impact of electric driveline efficiency
 - 5. Extend weight analysis
- Analyze different Objective Functions:
 - 1. Include battery operating cost due to degradation
 - 2. Include cost-to-cool for the energy storage
- Develop "online" energy management strategy to implement in HIL for prototype testing.

26

CONTACT *car.osu.edu*

Dr. Matilde D'Arpino Senior Research Associate darpino.2@osu.edu

Prof. Marcello Canova (canova.1@osu.edu) Prashanth Ramesh (ramesh.47@osu.edu) The authors thank the NASA ULI program for sponsoring this research (GRANT number NNX17AJ92A).

Thank You for Your

Kind Attention!