NASA Routine Payload Checklist (1 of 3)

PROJECT NAME: PROJECT CONTACT: PROJECT START DATE: PROJECT DESCRIPTION:

PHONE NUMBER: PROJECT LOCATION: DATE OF LAUNCH: MAILSTOP:

A.	S	AMPLE RETURN:	YES	NO
	1.	Would the candidate mission return a sample from an extraterrestrial body?		
B.	R	ADIOACTIVE MATERIALS:	YES	NO
	1.	Would the candidate spacecraft carry radioactive materials in quantities that produce an A2		
		mission multiple value of 10 or more?		
]	Prov	ide a copy of the Radioactive Materials On Board Report as per NPR 8715.3 with the ERP subn	nittal	
C.		AUNCH AND LAUNCH VEHICLES:	YES	NO
	1.	Would the candidate spacecraft be launched on a vehicle and launch site combination other		
		than those listed in Table C–1 below?		
	2.	Would launch of the proposed mission exceed the approved or permitted annual launch rate		
		for the particular launch vehicle or launch site?		
Cor	nme	ents:		
D.	F	ACILITIES:	YES	NO
υ.		Would the candidate mission require the construction of any new facilities or substantial	1110	110
		modification of existing facilities?		
Pro	vide	a brief description of the construction or modification required, including whether ground distu	rbanc	e
and	/or e	excavation would occur:		
E.		EALTH AND SAFETY:	YES	NO
		Would the candidate spacecraft utilize batteries, ordnance, hazardous propellant,		
		radiofrequency transmitter power, or other subsystem components in quantities or levels		
		exceeding the EPCs in Table C–2 below?		
		Would the expected risk of human casualty from spacecraft planned orbital reentry exceed the		
		criteria specified by NASA Standard 8719.14?		
	3.	Would the candidate spacecraft utilize any potentially hazardous material as part of a flight		
		system whose type or amount precludes acquisition of the necessary permits prior to its use or		
		is not included within the definition of the Envelope Payload Characteristics?		
	4.	Would the candidate mission, under nominal conditions, release material other than propulsion		
		system exhaust or inert gases into the Earth's atmosphere or space?		
	5.	Are there changes in the preparation, launch or operation of the candidate spacecraft from the		
		standard practices ² ?		
		Would the candidate spacecraft utilize an Earth-pointing laser system that does not meet the		
		requirements for safe operation (ANSI Z136.1-2007 and ANSI Z136.6-2005)?		
		Would the candidate spacecraft contain, by design (e.g., a scientific payload) pathogenic		
		microorganisms (including bacteria, protozoa, and viruses) which can produce disease or		
		toxins hazardous to human health or the environment beyond Biosafety Level 1 (BSL 1) ¹ ?		1

¹ The use of biological agents on payloads is limited to materials with a safety rating of "Biosafety Level 1." This classification includes defined and characterized strains of viable microorganisms not known to consistently cause disease in healthy human adults. Personnel working with Biosafety Level 1 agents follow standard microbiological practices including the use of mechanical pipetting devices, no eating drinking, or smoking in the laboratory, and required hand-washing after working with agents or leaving a lab where agents are stored. Personal protective equipment such as gloves and eye protection is also recommended when working with biological agents.

² Standard practices are described in NASA Routine Payload EA, Chapter 3 (NRP EA, 2011).

NASA Routine Payload Checklist (2 of 3)

PROJECT NAME: PROJECT CONTACT: PROJECT START DATE: PROJECT DESCRIPTION:

PHONE NUMBER: PROJECT LOCATION: DATE OF LAUNCH: MAILSTOP:

F.	(OTHER ENVIRONMENTAL ISSUES:	YES	NO
	1.	Would the candidate spacecraft have the potential for substantial effects on the environment outside the United States?		
	2.	Would launch and operation of the candidate spacecraft have the potential to create substantial public controversy related to environmental issues?		
	3.	Would any aspect of the candidate spacecraft that is not addressed by the EPCs have the potential for substantial effects on the environment (i.e., previously unused materials, configurations or material not included in the checklist)?		
Comments:				

Launch Vehicle	Space Launch Complexes and Pads					
and Launch Vehicle Family	Eastern Range (CCAFS)	Western Range (VAFB)	USAKA/RTS	WFF	KLC	
Athena I, IIc, III ^a	LC-46	CA Spaceport (SLC-8)	N/A	Pad 0	LP-1 ^a	
Atlas V Family	LC-41	SLC-3	N/A	N/A	N/A	
Delta II Family	LC-17	SLC-2	N/A	N/A	N/A	
Delta IV Family	LC-37	SLC-6	N/A	N/A	N/A	
Falcon 1/1e	LC-36	SLC-4W	Omelek Island	Pad 0	LP-3 ^b	
Falcon 9 ^c	LC-40	SLC-4E	Omelek	Pad 0	LP-3 ^b	
Minotaur I	LC-20 and/or LC-46	SLC-8	N/A	Pad 0	LP-1	
Minotaur II-III	LC-20 and/or LC-46	SLC-8	N/A	Pad 0	LP-1	
Minotaur IV	LC-20 and/or LC-46	SLC-8	N/A	Pad 0	LP-1	
Minotaur V	LC-20 and/or LC-46	SLC-8	N/A	Pad 0	LP-1	
Pegasus XL	CCAFS skidstrip KSC SLF	VAFB Airfield	Kwajalein Island	WFF Airfield	N/A	
Taurus	LC-46 and/or LC-20	SLC-576E	N/A	Pad 0	LP-1	
Taurus II	NA	NA	N/A	Pad 0	LP-3 ^b	

Table C-1. Launch Vehicles and Launch Sites

Any other launch vehicle/launch site combination for which NASA has completed or cooperated on the NEPA compliance

^a Athena III and LP-3 are currently under design.

^b While not explicitly listed in this table, the Minotaur IV includes all configurations of this launch vehicle, including the Minotaur IV+, which is a Minotaur IV with a Star 48V 4th stage.

^c Includes that Falcon 9 v1.1 per NASA FONSI published in 2013.

Key: CA=California; CCAFS=Cape Canaveral Air Force Station; KSC=Kennedy Space Center; LC=Launch Complex; LP=Launch Pad; MARS=Mid-Atlantic Regional Spaceport; SLC=Space Launch Complex; SLF=Shuttle Landing Facility; USAKA/RTS=United States Army Kwajalein Atoll/Reagan Test Site; VAFB=Vandenberg Air Force Base; WFF=Wallops Flight Facility.

NASA Routine Payload Checklist (3 of 3)

Table C-2. Summary of Envelope Tayload Characteristics by Spacecraft Subsystems				
Structure	• Unlimited: aluminum, beryllium, carbon resin composites, magnesium, titanium, and other materials unless specified as limited.			
Propulsion ^a	 Liquid propellant(s); 3,200 kg (7,055 lb) combined hydrazine, monomethyhydrazine and/or nitrogen tetroxide. Solid Rocket Motor (SRM) propellant; 3,000 kg (6,614 lb) Ammonium Perchlorate (AP)-based solid propellant (examples of SRM propellant that might be on a spacecraft are a Star-48 kick stage, descent engines, an extra-terrestrial ascent vehicle, etc.) 			
Communications	• Various 10-100 Watt (RF) transmitters			
Power	 Unlimited Solar cells; 5 kilowatt-Hour (kW-hr) Nickel-Hydrogen (NiH₂) or Lithium ion (Li-ion) battery, 300 Ampere-hour (A-hr) Lithium-Thionyl Chloride (LiSOCl), or 150 A-hr Hydrogen, Nickel-Cadmium (NiCd), or Nickel-hydrogen (Ni-H₂) battery. 			
Science Instruments	 10 kilowatt radar American National Standards Institute safe lasers (see Section 4.1.2.1) 			
Other	 U. S. Department of Transportation (DoT) Class 1.4 Electro-Explosive Devices (EEDs) for mechanical systems deployment Radioactive materials in quantities that produce an A2 mission multiple value of less than 10 Propulsion system exhaust and inert gas venting Sample returns are considered outside of the scope of this environmental assessment 			

Table C–2. Summary of Envelope Payload Characteristics by Spacecraft Subsystems

^a Propellant limits are subject to range safety requirements.

Key: kg=kilograms; lb=pounds.

[Program or Project Manager] or Program Executive for HQ Actions

[Date]

[Center NEPA Manager] or NASA NEPA Manager for HQ Actions

[Date]