National Aeronautics and Space Administration

NASA's Advanced Energy Storage Systems Battery Development

"Silicon Anode Based Cells for High Specific Energy Systems" Amprius, Inc

NASA Aerospace Battery Workshop November 15-17, 2016

Presented by: Brianne DeMattia NASA Glenn Research Center

- Overview of NASA's Game Changing Development Program & Advanced Energy Storage Systems (AESS) Project
- AESS Goals for Battery Development
 - Category 1 vs Category 2
 - Phased development
- Amprius Phase I Efforts
- Amprius Phase II Progress & Upcoming Work

Game Changing Development Program (GCD)

- Space Technology Mission Directorate
- Supports Agency strategic goal to "create the innovative new space technologies for our exploration, science, and economic future"
- Responsible for advancing space technologies, with an emphasis on groundbreaking, transformational approaches
- Mid-range TRL 3-5/6
- Combination of NASA in-house directed efforts and competed efforts

Advanced Energy Storage Systems (AESS) Project Overview

- Goal: Develop and demonstrate technologies for safe, abundant, reliable, and lightweight energy storage
 - Category 1: Develop & demonstrate energy storage devices with high specific energy and integrate into an optimized battery pack design to preserve weight and volume benefits
 - Category 2: Develop ultra-high specific energy storage devices that increase the specific energy beyond the limits of lithium-ion chemistry capability

Technology Development Phase	TRL at end of Phase (Cat. One)	TRL at end of Phase (Cat. Two)	Anticipated Number of Awards [*]	Value of Each Award	Period of Performance (POP)
Phase I	4	3	4	Up to \$250K per	Up to 8 Months
Phase II	5	4	2	Up to \$1M per	Up to 12 Months
Phase III	6	5	1	Up to \$2M	Up to 15 months

- Technology Advancements
 - Lightweight lithium ion batteries with >300 Wh/kg capability
- Technology advances mean-
 - Lighter, more powerful batteries for EVA suits, rovers, transportation elements, etc.
- Pull technology
 - ISS & exploration EVA suit power, uncrewed and crewed rover power, exploration transportation element power, etc.

Key Performance Parameters					
Performance Parameter	Category 1 Goal Cell/Battery	Category 2 Goal Cell/Battery			
Specific Energy (Wh/kg)	300/250	400/350			
Cycle Life (cycles)	200	200			
Operational Temp. (°C)	0 to 30	-10 to 30			

- Phase I contracts 4 awards
 - 1 Category 1 effort, 3 Category 2 efforts
 - Competitive process
- Phase II contracts underway for first 9 (of 12) months
 - Competitive process
 - Amprius, Inc partnered with Enersys (Quallion) "Silicon Anode Based Cells for High Specific Energy Systems"
 - University of Maryland "Garnet Electrolyte Based Safe, Lithium-Sulfur Energy Storage

- Amprius, Inc headquartered in Sunnyvale, CA
- Develops, manufactures and sells lightweight, high energy lithium-ion cells
 - Pure silicon nanowire technology from Stanford University
 - Silicon-enabling electrolytes and cell components
- Other government efforts: DARPA, Dept. of Commerce, DOE, Army, USABC
- Commercial Projects (Sample): Top 3 Defense Contractor and Top 3 Smartphone Manufacturer

- Design a cell with specific energy of ≥300 Wh/kg at end of life when discharged at a rate of C/10
- Cycle life of ≥200 cycles at 90% depth of discharge and a rate of C/2
- Maintain specific energy and cycle life at the temperature NASA specified, 20° C
- Pass hotbox test (exposure to 110° C for 30 minutes)
- Pass over-discharge test (150% discharge at 1C rate)
- Pass short circuit test
- Pass overcharge test (C/5 rate for 5 hours)
- Preliminary design of a battery pack to achieve NASA's end-of-project requirements

Amprius' cells met NASA's energy (≥ 300 Wh/kg) and cycle life (≥ 200 cycles) goals at 20° C

Note: Dotted lines represent 80% of capacity for each cycling rate (C/10, C/2)

• Excellent performance down to 0° C

- Received 2 cells to test at NASA GRC
- 1 cell had more rapid capacity loss, ~150 cycles
- 250 cycles to 80% capacity of remaining cell

- ✓ Cells met >300 Wh/kg specific energy goal and 200 cycle goal
 - Good low temperature performance
- ✓ Preliminary battery pack design
- Proposed optimized cell design based on battery pack
- ✓ Verified cell performance at NASA GRC

- Optimize cell design
- Design, build & test brass board battery

Performance Parameter	Cell Level	Battery Pack
Total Energy		1625 <u>Wh</u>
Specific Energy ¹	>300 watt-hour (Wh)/kg	250Wh/kg
Cycle Life ^{2, 3}	200	200
Operational Temperature ⁴	0° to 30° C	0° to 30° C
Volume		4 Liters
Mass		6.5 Kg
Voltage		28V
Discharge Rate	C/10	C/10
Safety	Tolerant to Electrical and Thermal Abuse ⁵	Tolerant to Electrical and Thermal Abuse ⁶

- 1. Cell energy parameters are for the beginning of cell life, and measured at a temperature of 20 °C, C/10 discharge rate.
- 2. A cycle shall be considered a full 100% charge followed by discharge to 90% depth-of-discharge.
- 3. Target cycle life> 200 cycles, with 80% specific energy retention at cycle #200.
- Performance over the entire range of temperatures per Section 1.4.1
- 5. Safety tests will be conducted on battery cells per Section 1.4.1.
- 6. Tolerance to battery-level safety/abuse tests will be determined per Section 1.4.1.

- NASA's Battery Specs: 1,625Wh, 28V, 58Ah
 - 5.8Ah capacity would be a good target for Amprius' cells
- Cell capacity: 5.8Ah
- Cell energy: 21Wh
- Energy density: 860 Wh/L
- Specific energy: 340 Wh/kg

• Cells 2x length of Phase I cells

• Amprius cycled cells at a C/2 rate and 90% DOD with full DOD C/10 capacity checks after each set of 50 cycles

- Amprius' cells met NASA's energy (≥ 300 Wh/kg) and cycle life (≥ 200 cycles) goals over the entire temperature range
- Amprius tested 3 cells at each temperature (0° C, 20° C & 30° C)

- Over-temperature up to 110° C (for a minimum of 1 hour)
 - No fire, no explosion, small voltage drop after 1h exposure
- Reversal with 150% excess discharge from 0 V at 1C rate
 - Voltage went into reversal after ~10min, stabilized after spike to -12V, vent without fire or explosion
- External hard short tests (load less than internal resistance of the cell held for a minimum of 3 hours)
 - Cell tabs could not withstand currents during short circuit and melted before full cell discharge
- Overcharge fully charged cell at C/5 rates for 6 hours
 - Cells reached max of ~5.3V and ~85° C with no fire or explosion
- Overcharge fully charged cell at 1C rate for 6 hours
 - Cells exploded soon after reaching 5V, ~30min into test

- Partnered with Enersys (Quallion) for battery design & build
- ~40 cells available for battery assembly and testing as of October
- Brass board design will be an 8S 10P configuration
- Virtual cells will connect via copper bus bars
- Battery Management System (BMS) previously designed on other program will be modified to account for the cell pack output level, parameters, and quantities
- BMS is mounted on top of battery pack
- Enersys completed a module cell pack for safety level testing

- Amprius will provide additional (80) cells for pack assembly
- Battery performance testing is tentatively scheduled to start 10/17
 - Testing at the Cell Pack Level
 - Testing at the BMS Level
 - Two-fault tolerance to overcharge
 - > Overdischarge
 - External short
- Conduct safety analysis from current design
- Prior to conducting the thermal runaway test, EnerSys plans to assemble a single cell pack and initiate a thermal event
- Amprius shall work with EnerSys to make a *best effort* to assemble hard prismatic cells with silicon nanowire anodes
 - Amprius will compare the specific energy of pouch and prismatic cells
- Cell delivery (5) to NASA GRC for independent assessment

THANK YOU FOR YOUR ATTENTION

Questions & Comments Brianne.T.DeMattia@nasa.gov