

LINHUA (STEVEN) HU

HOLIDAY INN, 5903 UNIVERSITY DR, HUNTSVILLE, AL 11.15.2023

LITHIUM ENERGY

AMERICAN

ALE Introduction

ALE's headquarters in Carlsbad, CA

Advanced Silicon Anode Lithium Batteries for Defense, Aerospace, Medical, and EV Markets

- Founded in 2006 to develop advanced lithium-ion ("Liion") batteries initially for Department of Defense ("DoD") applications
- Full-time operational facility (24000 sq ft) for battery R&D, testing and production in San Diego County.
- Certification of AS 9100D quality system
- Innovative products for DOD and medical applications
- 13.2 million grants from California Energy Commission to scale up our 4Ah 18650 cell to 1.5 million cells per year and nano Si prismatic cells to >100K cells per year
- 50+ awarded US patents and 3 international patents

Outside USA-made batteries identified as strategic risk - long-term effort initiated to source onshore suppliers

Ultra-Lightweight Expeditionary Power

Vehicles

Conformal Wearable Battery

NASA

6T Vehicle Battery Pack and BB-2590 Man-Portable Battery Pack using Non-Flammable High-Capacity Li-ion Cells

Missile/Missile Launch and

Satellite Battery

Cell (LBSCHC)

LITHIUM ENERGY AMERICAN

NORTHROP GRUMMAN

Systems

EnergyCore Battery

Challenge 1: Space Battery Requirements for Satellites

Satellite Orbit	GEO (Geostationary Earth Orbit)	MEO (Medium Earth Orbit)	LEO (Low Earth Orbit)
Altitude	36,000Km	5,000-20,000Km	500~1,200Km
latency	>500ms	<80ms	<30ms
Earth coverage	Very large	Large	Small
Satellites Required	Three	Six to Twenty	Hundreds to thousands
Time circle earth	24hr	2~12hrs	~90 minutes
Satellites Lifespan	~15 years	~10 years	5-7 years
Application	weather data, broadcast TV, and low-speed data communication	GPS, other navigation applications, and high- bandwidth data service	Real time data service, International Space Station, Star link for global coverage
Dettemu ve guivergent	Lawa aval	life, long time, storege, high energy	and a section.

Battery requirement

Long cycle life; long time storage; high energy density

ALE batteries can meet these requirements

AMERICAN 🚰 LITHIUM ENERGY

https://www.oceanweb.com/a-guide-geo-leo-and-meo-satellites/ https://www.starlink.com/business/maritime

Challenge 1: Space Battery Requirements for Satellites

40,000 LEO satellites for Star link

DOD (%)

20

20

20

Time

(years)

3

5

15

Cycles

15,000

25,000

75,000

Satellite Eclipse

Space battery needs for (1) matching lifespan of satellites (2) matching numerous satellites for global coverage

~5000 times eclipse/year, 35 minutes/time

ALE's 4Ah 18650 cell can meet the cycle life requirement per two year's cycle life data

https://www.universetoday.com/156383/starlink-satellites-are-still-bright/

AMERICAN

Satellite

LEO

LEO

LEO

Mission

2

3

https://doi.org/10.15394/ijaaa.2019.1412 Computation of Eclipse Time for Low-Earth Orbiting Small Satellites. International Journal of Aviation, Aeronautics, and Aerospace, 6(5).

Overdischarge Process: Cu dissolution and dendrites, Internal short

Recovery Battery from Deep Discharge even Zero voltage Exposure

ALE Solutions: Prevent Cu dissolution at low Voltage

AMERICAN

Zero Voltage Technology

Challenge: When U is close 0 voltage, the potential of negative electrode increase to 3.56 V vs Li+/Li, the corrosion of negative (Cu foil) happen (Cu oxidization to Cu+)

Negative Impact:

- Existing Li-ion batteries are dead or damaged if discharged to zero volt
- Billion dollars of satellite lost every year due to the dead bus caused by the failure of the batteries
- To avoid the dead bus issue, some low energy density batteries such as Nimetal Hydride batteries (50 to 75 Wh/kg) were used for space application

Solution: When a sacrificial electrode applied, whose corrosion happen first and protect Cu foil.

ALE Patented ZVT:

- Materials is low cost and not moisture sensitive or air sensitive
- Not participate in the normal electrochemical reaction
- > The protection starts when the cell is assembled (close to zero voltage)
- > Improved cycle life due to the protection in the wetting period before the formation
- > Applicable to any lithium-ion battery cells when Cu foil is the current collector
- Very useful in the battery logistics, battery shelf life, and battery safety

Discharge

Rest

Charge

18650 Cell Performance at Room Temperature

- Cell capacity: 4.2Ah at different rates
- Specific energy:~330Wh/kg
- Specific power: ~700W/kg
- Cycle life: ~500 cycles at 80%DOD(80% retention)

Zero voltage Exposure: Sacrificial Design with long life 1000 cycles

The cell capacity (4.2-2.5V) have little change after ZVE, the cell retention is 98% after ZVE 35 days (7days X5).

AMERICAN 🎇 LITHIUM ENERGY

Microscopy: Non-Sacrificial Design

Negative Electrode

AMERICAN

С-К	0-К	F-K	Na-K	Si-K	P-K	Cu-L
11.8	50.2	3.6	0.2	34.2		
35.1	35.4	8.3	0.5	19.2	0.9	0.6

LITHIUM ENERGY

Si/C anode confirmed Cu foil severely corroded

Positive Electrode

С-К	0-К	Al-K	Mn-K	Co-L	Ni-L	Cu-L
16.7	52.9		2.1	2.3	25.9	
4.0	2.9	0.8		0.8	0.0	91.6

811 polycrystal sphere confirmed Cu plate deposited on the positive electrode

Microscopy: Sacrificial Design 2

Negative Electrode After ZVE 200hm 7days X5

AMERICAN

LITHIUM ENERGY

Positive Electrode After ZVE 200hm 7days X5

No corrosion observed on negative and positive electrode
Deep cracks observed from electrochemical sacrificial protection

Sacrificial Electrode before ZVE

Sacrificial Electrode after ZVE

20%DOD: Sacrificial Design 1

Cycle number	1	1500	7583
End voltage	3.6176	3.3663	3.3094
Energy retention	100%	96.33	95.34

- ~3.67% reversible discharge polarization energy reduction from 1st to 1500th cycle (equilibrium state to steady state)
- \succ ~0.99% discharge loss from 1500th to 7583rd cycle.
- Projected cycle life: >94,255 cycles (18 years); larger than the 75,000 cycles (15 years).

20%DOD: Sacrificial Design 2

- ~3.96% reversible discharge polarization energy reduction from 1st to 1500th cycle (equilibrium state to steady state)
- \succ ~1.31% discharge loss from 1500th to 8992nd cycle.
- Projected cycle life: >85,838 cycles (17years); larger than the 75,000 cycles (15 years).

100%DOD: Sacrificial Design 3

 \succ Cell are tested 20 cycle life (4.2-2.5V) and 1 cycle life (4.2-0V); and looped 12 times.

260 cycle life with 80% capacity retention. The major failure mode is due to the cell being over discharged repeatedly. The Cu dissolution should not be the cause of the capacity loss per cycle

AMERICAN 🎥 LITHIUM ENERGY

Safety

> 18650 4Ah passed Impact, Crush, and Hotbox test

> 18650 4h cells have been designed and built with ~330Wh/kg and 700W/kg.

- ➤ 18650 4h cells have demonstrated excellent zero voltage stability, ~98% capacity retention after 20ohm 7days for 5 times. This is very promising for GEO and MEO satellites.
- The projected cycle life of 18650 4Ah ZVT cells should be >85,838 cycles (17years) per our two years cycle life data: ~1.3% energy loss from 1500th to 9000th after electrochemical stabilization.

> 18650 4Ah cells have passed impact, crush, and hotbox tests per UN standard.

