

Lot-to-Lot Performance Review of GS Yuasa Li-Ion Space Cells & the Role of Configuration Management

Tom Pusateri, Curtis Aldrich, GS Yuasa Lithium Power, Inc.; and Masazumi Segawa, Naozumi Miyanaga, GS Yuasa Technology, Ltd.

November 15, 2016 2016 NASA Aerospace Battery Workshop

- GS Yuasa Technology (GYT) Lithium-ion Space Flight Heritage Update
- Current Cell Line up and Qualification Status
- GS Yuasa's Approach to Configuration and Supplier Management
- Method of cell data analysis
 - \rightarrow Typical sigma method (assumes normal distribution)
 - \rightarrow Method of fourths (assumes no underlying distribution)
- 12 production lots Performance review of the LSE134-101.
 → Initial Capacity, AC Impedance, Mass

GS Yuasa Lithium-ion Space Heritage

GS Yuasa is a world leader in Li-ion energy storage for orbital vehicles

- Number of satellites..... 129+
- 1st satellite on-orbit...... Servis 1 (30 Oct. 2003)
- Watt hours on-orbit...... >2.47 million
- Space cell qualification programs......
- Cell sizes (Ah) flown.....
- Performance to date..... No failures
- Backlog (Wh)..... ~2 million

Launch vehicles & number of satellites

Ariane-5	33	H-2B	5	Falcon-9 v.1.2	2	Atlas-5(431)
Soyuz-2-1 Fregat	24	Antares 4 Proton-M Bri (Ph.4)		Proton-M Briz-M (Ph.4)	2	Dnepr
Proton-M Briz-M (Ph-3)	18	Atlas-5(401)	4	Rokot-KM	2	Epsilon
H-2A	15	Proton-M Briz-M (Ph.2)	4	Zenit-3SL (2)	2	GSLV Mk.2
Falcon-9 v.1.1	5	Zenit-3SLB	3	Atlas-5(421)	1	Proton-M Briz-M (P1m1)

>21

35; 50; 100; 175; 190; 200

1

1

1

1

1

GS Yuasa Lithium-ion Cells, MWh Launched

Notable NASA Space Programs

OSC's CRS Cygnus vehicle

- LSE190 (Gen. III Energy Type Cell)
- Cell qualification testing (JSC20793) completed (GYT)
- Battery qualification successfully completed (GYLP)
- Flight batteries manufactured and delivered (GYLP)

RBSP Radiation Belt Storm Probes

Van Allen Probes (Radiation Belt Storm Probes)

- LSE50 (Gen. II Cell)
- Cell qualification testing completed (GYT)
- Successful launch of RBSP satellites on August 30, 2012
- Successfully completed primary mission

International Space Station

- LSE134 (Gen. III Power Type Cell)
- Cell qualification completed (GYT)
- Awarded contracts to deliver >1,000 cells (2012-2017)

ICESat-2

LSE134 (Gen. III Power Type)

GS Yuasa Space Li-Ion Cell Configurations

GS YUASA LSE102 37V-1024	GS YUASA LSE134 J.7V:IJAAN		Chausistan		Dire		
· · · ·	.SE51 3.7V-SIAh		Chemistry		DIM	ensions (mm)
		Generation II	Genera Enormy Type		Width	Height*	Thk.
		Standard	Energy Type	Power Type			
		LSE35	LSE42	LSE38	98	151	37
		LSE50	LSE55	LSE51	130	123	50
	Cenfiguration	LSE100	LSE110+	LSE102 [†]	130	208	50
	Configuration		LSE145 [†]	LSE134	130	263	50
		LSE175	LSE190	LSE176	165	263	50
"	Heritage" — Next Genera	tion" —			* Not includ † Revised po	ing terminal ositive termin	al

GS Yuasa Space Li-Ion Cell Configurations

GS YUASA LSE102 37V-102M	GS YUASA LSE134 J.TVIJAAN	Configuration Configuration Qualification Engineering i Equivalent co	n qualified n qualified, QT data pending model cells on test onfiguration qualifie	property of US Gov ed and flown, Japan	ernment	n	
US YU	-SE51 3.7V-514h		Chemistry		Dim	ensions (mm)
		Generation II	Genera	ation III	Width	Hoight*	Thk
		Standard	Energy Type	Power Type	width	neight	THK.
		LSE35	LSE42	LSE38	98	151	37
	Coll	LSE50	LSE55	LSE51	130	123	50
	Configuration	LSE100	LSE110+	LSE102 [†]	130	208	50
	comguration		LSE145 [†]	LSE134	130	263	50
		LSE175	LSE190	LSE176	165	263	50
"	Heritage" — Next Genera	tion"			* Not includ † Revised po	ing terminal ositive termin	al

GS Yuasa Lithium-ion Cells for Space

Powering the Next Generation

			GEN II				GEI			
			Heritage			Power			Energy	
Model		LSE50	LSE100	LSE175	LSE51	LSE102	LSE134	LSE110	LSE145	LSE190
Cathode			LiCoO2			LiCoO2			LiCoO2	
Anode			Graphite			Graphite			Graphite	
Cell Capacity										
Nominal Capacity	Ah	50 100 175 5			51	102	134	110	145	190
Nominal Energy	Wh	185 370 648				377	496	407	536.5	703
Specific Energy (Nominal)	Wh/kg	123	133	139	124	136	140	147	151	153
Cell Electrical Specifications										
Nominal Voltage	V		3.7			3.7			3.7	
End of Charge	V		4.1			4.1			4.1	
End of Discharge	V		2.75			2.75			2.75	
Max Continuous Charge Current	A	25	50	87	25	50	67	55	72.5	95
Continuous Discharge Current	A	50	100	175	76.5	150	134	110	145	190
Maximum Discharge Current	A	150	300	525	153	300	402	330	435	570
Environmental Operation Ranges										
	Charge		10 ~ 30			10 ~ 30			10 ~ 30	
Temperature range (⁰ C)	Discharge		-10 ~ 30			-10 ~ 30			-10 ~ 30	
	Storage		-10 ~ 10			-10 ~ 10			-10 ~ 10	

* Charge/discharge currents limited by temperature.

- Large format Lithium-ion cells are built to order. While the factory is always in production, several months can go by between production runs of a particular cell design.
- This reality may raise a few questions:
 - → How do I know if any changes have been made since the last build or order?
 - \rightarrow Have the materials changed or come from different sources?
 - → Is it a significant risk that the cell design hasn't been manufactured for several months?

Robust Configuration Management Systems and Supplier Control Regulation is the answer.

A strong configuration management system covering procurement through final test will mitigate the above concerns.

- Configuration management refers to the specific quality processes which mandate how an organization will create, organize, manage and control the identification and physical/functional attributes of the product.
 - → The configuration management quality regulation is developed by the organization with specific employees responsible for the training, execution, and oversight of the regulation's execution.
- Document Control: A systematic approach to the organization and release of official product documentation
- Change Control: Methods to allow changes of configuration controlled documents
 - Continuous improvement (Clarification, Improvements, etc...)
 - Correction of errors (incorrect information, typos, etc...)
 - Change to manufacturing (process/materials) or test
- Quality Assurance and Engineering groups work closely to execute, maintain and audit this system.
 - \rightarrow System is subjected to internal audits twice per year.

GS Yuasa Approach to Document Control

GS Yuasa defines 4 major levels of documentation, Starting with the most general and building to specific.

- Level 1: Quality Manual
- Level 2: Quality Regulations
- Level 3: Standards and Procedures
- Level 4: Forms and Records

The Quality Manual and various Quality Regulations describe how GS Yuasa will implement and control the quality of GS Yuasa Products. Level 3 and Level 4 documents define and control specific products and parts manufactured at GS Yuasa.

Level 3 and 4 documents are typically the focus of product audits.

Supplier management is critical to the performance consistency of the LSE cell.

- GS Yuasa maintains strong relationships with suppliers of LSE components.
 - → GS Yuasa is a major purchaser of Li-ion materials (for both space and terrestrial applications) and has significant leverage in the marketplace.
 - \rightarrow Key supplier relationships date back several decades.
 - \rightarrow Preservation of the qualified formulation.
- GYT conducts regular audits of supplier's facilities.
 - → Suppliers who provide critical components (terminals, cell cases, active material) are audited more frequently.
- GYT holds a Supplier Conference in Kyoto every year.
 - \rightarrow 60+ suppliers attend.
 - → GYT reports on the quality ratings of those suppliers and collaborate on ways to improve quality systems.

Configuration/Supplier Management Effectiveness

- How can we measure the effectiveness?
 - → Internal and External Audits of the quality system and cell design documentation.
 - Audits should reveal no unauthorized changes to the documentation
 - Organizations are welcomed to visit the factory in Kyoto to review the quality system, production documentation and tour the manufacturing and test areas.
 - » Aerojet Rocketdyne, Aerospace Corp, Boeing, JHUAPL, Lockheed, NASA, Orbital, USG, etc...
 - \rightarrow Review Cell Test Data
 - The ability to demonstrate lot to lot consistency is critical and can be used as an indirect measure of the organizations quality system.
 However this requires a large amount of manufactured cells for effective analysis.

Production Data Review

Study Population Cell Design: LSE134-101 Unique Production Lots: 12 Serialized Cell Quantity: 1247 Activation Date ranges: Q4 2011 through Q2 2016 (Not continuous production. Typical for other cell designs to be manufactured in between LSE134-101 lots)

GS YUASA LSE134 J7VIJAAN GS VUASA LSE134 J7VIJAAN

Note on Manufacturing:

- Cell Manufacturing consists of several batch processes.
 - → Mixing, Coating, Winding. Electrolyte Filling / Activation, Testing
- Critical that processes be repeatable.
 - → If not a large variation in the cell characteristics should result.

LSE134-101 Production Quantities

Lot Number	Activation Date	Delivery Target qty	Serialized cell qty
001	09/2011	100	111
002	04/2012	66	67
003	01/2013	66	68
004	09/2013	100	110
005	01/2014	100	111
006	09/2014	100	113
007	12/2014	100	107
008	06/2015	100	115
009	07/2015	100	110
010	10/2015	100	112
011	04/2016	100	110
012	06/2016	100	113
Totals		1132	1247

GS Yuasa typically manufactures 10%-15% more elements than required for delivery to account for typical process attrition.

Serialization occurs after the element has passed all internal GYT quality inspections **Data Examination Techniques**

- Typical Statistical Methods
 - \rightarrow Average
 - \rightarrow Population Standard Deviation (σ)
 - \rightarrow Average±3 σ
 - Check for outliers as possible out of family data or test anomalies

Assumes data is normal which is not always a good assumption!

- Method of Fourths, Alternate data review process
 - \rightarrow Sort values according in ascending order and assign Ranks (1,2,...,n)
 - → Find rank that corresponds to Median value $(n_{Median} = \frac{n+1}{2})$
 - \rightarrow Establish Fourth Rank boundaries and their corresponding values

- Lower Fence, L_{fence} = first data point > F_L -1.5*d_f
- Upper Fence: U_{fence} = first data point < F_U +1.5*d_f
 - \circ If data is normal distribution data between the fences is Average±2.7 σ
- \rightarrow Use a Box Plot for quick visual identification
 - Easily shows potential outside values, but may not necessarily be outliers

Does not assume an underlying distribution!

0.2CA discharge capacity is measured with the procedure shown below:

Step	Operation	Туре	Current / A	Voltage / V	Time	Temp.
1	Rest	_	_	_	4 hours or more	
2	Charge	CC/CV	26.8	4.10	8 hours	
3	Rest	-	—	—	+30/-0 minutes	20 deg.C
4	Discharge	CC	26.8	2.75	-	
5	Rest	-	-	-	10 min or more	

0.5CA discharge capacity is measured with the procedure shown in below:

Step	Operation	Туре	Current / A	Voltage / V	Time	Temp.
1	Rest	-	-	-	4 hours or more	
2	Charge	CC/CV	26.8	4.10	8 hours	
3	Rest	-	-	-	+30/-0 minutes	20 deg.C
4	Discharge	СС	67	2.75	-	
5	Rest	-	-	-	10 min or more	

Requirement: Discharge capacity shall be >140 Ah as measured in step 4

0.2C Capacity

EUT	Average			-331B1110		14	7.8		149	.2 149	0.7 150.1	1 15	0.8								
001	149.54	0.69		147.47-151.61	147.65-150.84																
						*															
Lot	Median	FL	Fu	Fence _L	Fence _u			149.5		140.5	150	150.5	151	1515	152	152.5	152	1525	154	1545	
001	149.7	149.2	150.1	147.8	150.8	14/ 147.3	148	148.5	149	149.5	150	150.5 Ca	pacity (1	Ah)	152	152.5	155	153.5	154	154.5	155

Lot	Median	FL	Fu	Fence _L	Fence _u		+		1.05	-			150.5					+		<u>_</u>		<u> </u>
007	152.10	151.53	152.49	150.59	153.30	147	147.5	148	148.5	149	149.5	150	150.5 Ca	pacity (1	151.5 Ah)	152	152.5	153	153.5	154	154.5	155

Median

150.66

Lot

008

FL	Fu	Fence _L	Fence _u	H				-	+	-								-		<u> </u>
150 24	151 57	149 18	153 34	147	147.5	148	148.5	149	149.5	150	150.5 Ca	151 ipacity (.	151.5 Ah)	152	152.5	153	153.5	154	154.5	155

Lot	Median	FL	Fu	Fence	Fence _u																	
					-	147	147.5	148	148.5	149	149.5	150	150.5	151	151.5	152	152.5	153	153.5	154	154.5	155
009	114.98	147.46	151.08	147.92	151.82		117.00	110	11012			100	Ca	pacity (.	4h)	102	10210	100	10000		10110	

Lot	Average	Std Devia	tion	±3sigma	Min-Max	LOIDIO 150.6 151.6 151.9 152.5 153.7	
010	152.1	0.76	1	49.82-154.39	150.57-154.15		
Lot	Median	FL	Fu	Fence _L	Fence _u		-
010	151.86	151.63	152.49	150.57	153.74	147 147.5 146 146.5 149 149.5 150 150.5 151 151.5 152 152.5 153 155.5 154 154.5 Capacity (Ah)	155

LOU	Average	Stu Devia		Tosigilia	IVIIII-IVIdX	150.6 151.9 152.3 152.8 153.4
011	152.23	0.75	1	149.80-154.49	148.53 -153.42	
						*
Lot	Median	FL	Fu	Fence _L	Fence _u	
011	152.29	151.91	152.81	150.59	153.42	Capacity (Ah)

Lot	Median	FL	Fu	Fence _L	Fence _u		140	149.5	140	140.5	150	150.5	151	1515	152	152.5	152	1525	154	1545	
012	150.76	150.26	151.27	148.95	152.32	147 147.3	140	140.5	149	149.3	150	150.5 Ca	pacity (1	Ah)	152	152.5	155	155.5	154	134.3	155

0.2C Capacity Histogram

0.2C Capacity Final Thoughts

0.5C Capacity

0.5C Capacity -Capcity (Ah) -* **Cell Serial Number** Lot001 X Lot002 Lot003 + Lot004 - Lot005 - Lot006 Lot007 Lot008 A Lot009 × Lot010 🗶 Lot011 🛛 🔍 Lot012 🚽 Average 🚽 +3sigma 🚽 -3sigma

Lot	Average	Std Deviati	ion	±3sigma	Min-Max	All Lot 147.6				150.0	1	51.0	152.	1			154.1		
All	151.05	1.32	14	17.10-155.00	147.57-154.10														
Lot	Median	FL	Fu	Fence _L	Fence _U		140 1405	140	140.5	150	150.5		152	152.5	152	153.5		1515	
All	151.02	150.03	152.06	147.57	154.10	147 147.5	148 148.5	149	149.5	150	0.5C	Capacity	152	152.5	155	153.5	154	154.5	155

AC Impedance

Requirement: Each cell shall be tested for AC Impedance less than 0.65 milliohms at frequency of 1kHz at 13.4Ah charged state.

Major Test Equipment:

Item	Manufacturer	Range	Accuracy
Impedance Meter	HIOKI 3560	AC 1kHz	+/- 0.5% of rdg +/- 5dig

Prior to the measurement, SOC shall be adjusted as follows (if needed):

- Discharge the cell at C/5 to 2.75V at room temperature
- Charge the cell at C/5 for 30min. at room temperature (10%SOC)
- Perform AC impedance check

AC Impedance

Requirement: Cell mass shall be 3530g±100g when measured with electronic balance

Major Test Equipment:

Item	Manufacturer	Range
Electronic Balance	METTLER PE-11	0-11kg

Cell Inspection Area

Cell Mass

Powering the Next Generation

Conclusions

- By utilizing rigorous systems for the control of manufacturing and test processes, GS Yuasa's LSE cells show excellent consistency between manufacturing lots.
- Initial Characteristics reviewed for over 1200 manufactured LSE134-101 Cells shows excellent consistency for key parameters.
- Somewhat expectedly, Capacity data for all manufacturing lots are not normally distributed but skewed towards higher capacities from the mean.
- When reviewing single lots with a limited populations, assuming a normal population may not be a good assumption.
 - → When writing specs be careful if you define statistical requirements for out of family determination!

One more thing...

LSE190 Modular battery system introduction

GYLP has manufactured a 12 cell pack Qualification Battery

In application, a battery system may be comprised of multiple packs in series

Cell level testing completed: Environmental Tests (JSC 20793)

- Vibration (sine & random)
- Shock
- Acceleration

Cell Safety Tests

- Over-charge
- Over-discharge (forced reversal)
- External short circuit (2 & 5 milliohm)
- Crush (induced internal short circuit, fresh & seasoned specimen)
- Heat to vent
- Drop
- Vent pressure, Burst pressure

Battery Module Building Blocks

Watt-hours₁ GEO power (W)₂ EOCV₃ EODV₄ Mass (lbm)₅ Width (in.) Module Configuration Length (in.) Height (in.) Α 4286.4 25.2 20.1 86.1 15.16 1p6s 2610 9.17 13.17 В 1p7s 5000.8 3045 29.4 23.4 97.2 17.19 9.17 13.17 С 1p8s 5715.2 3480 33.6 26.7 108.4 19.22 9.17 13.17 D 1p9s 6429.6 3915 37.8 30.1 119.6 21.25 9.17 13.17 Ε 42.0 33.4 23.28 1p10s 7144 4350 130.7 9.17 13.17 F 1p11s 7858.4 4785 46.2 36.8 141.9 25.32 9.17 13.17 G 8572.8 1p12s 5220 50.4 40.1 153.1 27.35 9.17 13.17 Η 4286.4 2610 25.2 84.1 2p3s 20.1 15.16 9.17 13.17 33.6 2p4s 5715.2 3480 26.7 105.8 19.22 9.17 13.17 J 2p5s 7144 4350 42.0 33.4 127.4 23.28 9.17 13.17 К 8572.8 13.17 2p6s 5220 50.4 40.1 149.1 27.35 9.17

¹BOL, C/2 discharge, 4.10V to 2.75V

²15 year GEO mission, 80% actual DOD max, no bypassed cells

³based on 4.20V per cell EOM condition

⁴EOM, based on 20 year GEO mission at rated power

⁵includes cell pack, bus bars, bypass switches, wire harness, heaters, FITs and flexes

Module Stack-up Examples

Battery Configuration: 17.8kW GEO example

Power vs. Mass and Expected Voltage Range.

