Lithium-Sulfur Cell Chemistry Unlocked by 3D Graphene for Next-Generation Energy Storage

NASA Battery Workshop

Zach Favors VP of Battery R&D Nov 17, 2022

Key Team Members

- Dan Cook CEO
- Celina Mikolajczak Chief Battery Technology Officer
- Kumar Bugga Fellow
- Karel Vanheusden VP of Product Development
- Arjun Mendiratta Director of Carbon Materials
- Anurag Kumar Sr. Staff
- Jeff Bell Cell Integration Manager
- Yongtao Meng Sr. Manager
- Babu Ganguli Sr. Manager
- Josh Baty Director of Program Management

LYTEN

LYTEN OVERVIEW

YTEN

- Founded 2015 inventor of Lyten 3D Graphene[™]
- Global leader in 3D Graphene IP (according to PatSnap)
 - >280 patents/pending (across Lyten technologies and applications)
 - >\$335M raised
 - LytCell EV[™] lithium-sulfur cells / batteries
 - Sensors (including LIB safety sensors)
 - Composite material additives
- US Government / DoD Engagements
- HQ in San Jose, CA Offices Opening in Detroit, MI and Reno, NV
 - > 200 employees and growing
 - Approx. 150,000 ft² total office, lab and mfg space
 - 6,600ft² lab space
 - 9,700ft² pilot cell production line (operational 1H23)
 - 9,000ft² graphene synthesis & post-processing line (opening Fall '22)

ATTRACTIVENESS OF LI-S

Key Advantages

- Nickel / Cobalt-Free Chemistry
 - Potential to leverage fully domestic supply chain
- At maturity, 600 Wh/kg and 800 Wh/L possible (rate-dependent)
- Higher inherent safety via lack of oxygen-evolving materials
- At scale, potential for production at <60 \$/kWh
 - Elemental sulfur widely available domestically.

Energy Density of Li Chemistries

Class 1 mining production by country, %¹ of global production, 2019

Class 1 refined production by country, %¹ of global production, 2019

LI-S CELL STRUCTURE

BASIC CHARGE-DISCHARGE REACTIONS

LYTEN CONFIDENTIAL SUBJECT TO NDA

Key Attributes

- 2.1 V nominal discharge voltage vs. Li metal
- 1675 mAh/g theoretical sulfur capacity
- Conversion chemistry
 - Anode: 16Li → 16Li⁺ + 16e⁻
 - Cathode: $S_8 + 4Li^+ + 4e^- \rightarrow 2Li_2S_4$ $2Li_2S_4 + 12Li^+ + 12e^- \rightarrow 8Li_2S$
- Liquid-state and solid-state reactions can occur simultaneously
 - Non-Faradaic reactions also prevalent (Li₂S₄ disproportionation)
 - Sulfide species can exist as solubilized or precipitated
- Li metal anode is stripped and plated normal to the anode surface.

LI-S ELECTROCHEMISTRY IS HIGHLY TUNABLE

ADDRESSABLE LIFE CYCLE CHALLENGES IN LI-S

LYTEN CONFIDENTIAL SUBJECT TO NDA

ADDRESSABLE CELL CHALLENGES IN LI-S

LYTEN CONFIDENTIAL SUBJECT TO NDA

LYTEN 3D GRAPHENE®

DESIGNED TO BE DRAMATICALLY MORE REACTIVE THAN HISTORIC 2D GRAPHENE

LYTEN 3D GRAPHENE DEVELOPMENT

Key Advantages

- Able to tune surface area, pore size, and pore distribution through process controls. Tap density of carbon particles also tunable.
 - Li-S performance is related to both surface area, pore size, <u>and</u> pore distribution.
- Dopable
 - Able to dope carbons with higher valence atoms to increase catalytic activity of the graphene
- Outperforms high surface area commercial carbons at all C-rates

CLYTEN

ANODE MATERIAL DEVELOPMENTS

Cycle Life of New Lyten Anode Formulae and Coatings

12

ACTIVE LYTEN CELL DEVELOPMENT

Lyten Pouch Line

18650 / 21700 / 26650 Lyten Line

-

In-house X-Ray CT Scans - 18650

LYTEN CONFIDENTIAL SUBJECT TO NDA

LEO LI-S CYCLING

LEO Life Cycle Protocol			
DoD	Discharge Rate	Charge Rate	Time per Cycle
20%	C/2.92	C/5.08	96 min (61-min charge, 35-min discharge)
40%	C/1.46	C/2.54	96 min (61-min charge, 35-min discharge)
60%	C/0.97	C/1.69	96 min (61-min charge, 35-min discharge)
100%	C/3	C/3	6 hours (3-hour charge, 3-hour discharge)

LYTEN CONFIDENTIAL SUBJECT TO NDA

LI-S SAFETY

Key Attributes

- Li-S is inherently safer than traditional Li-ion technology.
- Lack of an oxygen-evolving cathode material reduces the probability of a sustained thermal "runaway" event
- Passivation / coating layer(s) on the anode can decrease anode reactivity.

CELL ABUSE TESTING

Key Results

- Temperature increased ~10°C in nail pen test.
- Similar behavior was reported in 16 Ah cells from Oxis by the Imperial College group [I. Hunt et al, J. Energy Storage 2 (2015) 25-29].
- This is possibly due to the non-conductive reaction products such as Li₂S formed locally at the penetration site due to high currents, which insulate the short circuit and allow the cell to behave normally.
- Lyten will continue to evaluate larger cell formats with newer formulations.

Nail Penetration Test

Crush Test

Thank You!

Contact: zach.favors@lyten.com