LIB Thermal Runaway and Combustion Research at Texas A&M University

James C. Thomas, Tatyana M. Atherley, Olivier Mathieu, and Eric L. Petersen

TEES Turbomachinery Laboratory J. Mike Walker '66 Department of Mechanical Engineering Texas A&M University

TURBOMACHINERY LABORATORY

- Part 1: Chemical Equilibrium Analyses: A priori prediction of thermal runaway consequences in LIBs
 - Overview and potential of CEA for LIB TR analysis
 - Representative modeling results and validation
- Part 2: Fundamental Combustion Studies: Improving the state-of-the-art chemical kinetics 2) for LIB electrolytes
 - Experimental methods shock tubes, laminar flame speed vessels, optical diagnostics
 - Representative fundamental data and chemical kinetic modeling
- 3) Part 3: Ongoing/Future Work: Pipeline LIB thermal runaway and combustion projects at TAMU

Part 1: Chemical Equilibrium Analyses A priori prediction of thermal runaway consequences in LIBs

Problem Statement: Significant energy, toxic gases, and potentially combustible gases are • released during thermal runaway of LIBs, which all represent potential hazards

- **Current Approach:** Evaluation of these hazards by inducing electrolyte decomposition or LIB • thermal runaway in abuse experiments
 - **Objective:** 1) Develop an a priori modeling approach

A&M ENGINEERING EXPERIMENT STATION

2) Validate against existing experimental data

RY I ABORATORY

3) Apply to various LIB chemistries, designs, conditions, etc.

Overview of Chemical Equilibrium Analysis (CEA)

CEA is utilized to predict reaction equilibrium conditions

Potential Impact:

- a priori modeling of TR events and consequences
- Inform experimental findings • and conditions
- Aid in the design of LIB systems (chemistry, enclosures, atm, etc.)

TURBOMACHINERY LABORATORY

TEXAS A&M ENGINEERING EXPERIMENT STATION

Combustion Chemistry Relative product concentrations Product phase (condensed vs. gaseous)

Minimization of Gibbs Energy

$$G = H - Ts$$

$$\Delta G = \Delta G^{0} + RT lnQ$$

$$\Delta G^{0} = -RT lnK_{p}$$

$$\frac{K}{P} = \frac{\Delta H^{0}}{RT^{2}} \& \left(\frac{\partial lnK}{\partial P}\right)_{T} = \frac{\Delta V^{0}}{RT^{2}}$$

Literature Summary:

- Toxic gas release during LIB thermal runaway is a noteworthy hazard and an active area of research
- Several experimental approaches are currently being taken
 - ARC, cone calorimetry, closed vessel sampling
 - Current experimental data lacks 'accurate' cell compositions
 - Temperature ramp (dT/dt) is typically too slow

TEXAS A&M ENGINEERING EXPERIMENT STATION

- Very little modeling has been completed
- [Golubkov et al., 2015] experiments are the best available

HINERY LABORATORY

Sandia Experiments [Roth et al., 2004] - DSC, ARC with temperaturetransient gas sampling - Reaction Gas Sampling - Cell-level and sub-components

Shortcomings

- No ignition and combustion
- decomposition kinetics modeling

Gas sampling data is more useful for

Clam Shell Blast Shield

Heating Unit

CEA Modeling – Example Results

Excellent agreement for plain electrolyte experiments, discrepancies for full LIB

Electrolytes – Gas Production in ARC Experiments – [Roth et al., 2004]

LFP LIB Cell – Gas Production in ARC Experiments – [Golubkov et al., 2015]

TEXAS A&M ENGINEERING EXPERIMENT STATION

TURBOMACHINERY LABORATORY

Full Chemistry (Cheetah Thermo Library) - 1.2 M LiPF₆

- CEA modeling capability developed for TR of electrolytes and LFP batteries
 - Simple extension to other chemistries
 - Important computational products:
 - Product composition and chemistry
 - **Reaction temperature**
 - Total heat release
- Experimental and computational agreement is moderate
 - Need for rapid heating experiments with 'well-characterized' cells
 - Need for more restrictive modeling (cathode breakdown threshold)
- Future Work
 - Implementation of restrictive modeling inclusions
 - Validation via fast-heating experiments
 - Analyze effects of pressure, ambient composition, chemistry, etc.

INERY LABORATORY

TEXAS A&M ENGINEERING EXPERIMENT STATION

Part 2: Fundamental Combustion Studies Improving the state-of-the-art chemical kinetics for LIB electrolytes

Motivation

The chemical kinetics of LIB electrolytes is an understudied topic

LIB Electrolytes:

- Essentially constituted of linear and cyclic carbonates
- DMC is a large component of electrolytes
- Most flammable/volatile component of LIBs •
- LIB electrolyte chemical kinetics
 - Understudied topic, especially in plain form(s)
- Current Study: DMC chemical kinetics
 - pyrolysis (thermal decomposition) and oxidation (combustion)
 - Shock tube studies: $\phi = 0.5, 1.0, 2.0, and \infty$; P~1.5 atm

T = 1230 - 2500 K; Diluted (98 - 99.25%)

- Laminar flame speed studies: $\phi = 0.7 1.5$; P = 1 *atm*; T = 318, 363, *and* 423 K •
- Improved chemical kinetics model

Experimental Setup – Shock Tube

Shock Tube Fundamentals:

- Diaphragm rupture (ΔP) produces shock wave •
- Reflected shock wave yields stagnant gas at • high pressure and/or temperature
- Highly-controllable conditions •
- Experiment terminates when contact surface • arrives (~ms)

TEXAS A&M ENGINEERING EXPERIMENT STATION

HINERY I ABORATORY

Laser Diagnostic(s):

- Monochromatic light attenuation
- Beer's Law:

$$\frac{I}{I_0} = \exp(-\frac{1}{2})$$

Absorption coefficient is computed

Linestrength f(T)

 $-k_{\nu}LPX_{i}$)

Experimental Setup – Laser Diagnostics

CO and H₂O laser diagnostics implemented on the shock tube

CO Laser Diagnostic

- Quantum cascade laser (QCL)
- Matched InSb photodectors
- Removable CO/Ar cell
- Fundamental ($\Delta \nu = 1$) CO band
- R(12), ν" = 0 transition (4566.17 nm)

H₂O Laser Diagnostic

- Tunable diode lase (TDL)
- Matched InSb photodectors
- Lexan enclosures (N_2 , < 0.1% RH)
- The $v_1 + v_3$ combination band
- $5_{5,1} \leftarrow 5_{5,0}$ transition (1388.139 nm)

TEXAS A&M ENGINEERING EXPERIMENT STATION

• No interference from CO or CO₂

Results – DMC ST Combustion (ϕ =2) – Species

Established database of transient species profiles

TEXAS A&M ENGINEERING EXPERIMENT STATION

Results – DMC ST Combustion – Delay Times

0001 (μ**s**) ^τ_{peak} (μ**s**)

100

0.65

Established database of ignition and induction delay times

Key Findings:

- Established fundamental database(s)
 - Transient species profiles
 - Ignition/induction delay times
- Improved state-of-the-art models

= 0.5

φ = 0.5

φ = 1.0

0.70

(a)

0.75

0.70

- - Hu et al., 2015

Sun/Westbrook/Law, 2010

0.75

 $1000/T_{5}$ (K⁻¹)

0.76

0.64

0.65

0.65

[Atherley et al., 2020] 14

Experimental Setup – Flame Speed Measurements Laminar flame speed measurement provide fundamental combustion data

RATORY

Laminar Flame Speed Vessel:

- Constant-volume bomb (14" ID x 16" H)
- High pressure (P < 150 psia) and temperature ($T_0 < 400$ K)
- Spherically expanding flame
- **Optical diagnostics**
 - Schlieren photography

TEXAS A&M ENGINEERING EXPERIMENT STATION

Chemiluminescence

(CH* and OH*)

Results – Flame Speed Measurements Established database laminar flame speeds

Key Findings:

- DMC flame speed measurement database established over wide range of temperatures (completed at CNRS ICARE facility)
- Good agreement with available literature
- State-of-the-art chemical kinetics models improved

Summary

- Shock tube and laminar flame speed experiments conducted with dimethyl carbonate (DMC)
- Pyrolysis and combustion (w/ O_2) conditions over a wide range of conditions •
- Experimental data included species (CO & H_2O) time histories, ignition/induction delay times, • and laminar flame speeds
- State-of-the-art kinetics models compared to the collected dataset and improved

Future Work

- Further data is required with other electrolytes and electrolyte mixtures
 - Key reactions need to be revisited •
- Evaluation of candidate fire suppressant additives

Part 3: Ongoing/Future Work Pipeline LIB thermal runaway and combustion projects at TAMU

Optical Diagnostics for LIB TR and Combustion

High-fidelity diagnostics can improve our fundamental understanding of LIB TR

Experimental Approach:

- LIB TR in an atmosphere-controlled bomb
- Initiation via heating, overcharge, laser
- Application of high-fidelity diagnostics
- Future: NASA JSC calorimeter

Potential Diagnostics:

- High-speed video optics
 - High-magnification (< 3 μ m/pixel)
 - Emission imaging
 - Chemiluminescence
 - Digital holography (Dr. W. Kulatilaka)
- Laser-based species measurements

TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

ng of LIB TR

Solid Propellant (AP/HTPB + MgB)

Combustion Behavior of LIB TR Vent Gas

Vent gases from LIB TR events can pose significant combustion hazards

<u>UL 9540A</u>: Test Method for Evaluating Thermal Runaway Fire Propagation in Battery Energy Storage Systems

Cell Level Testing: TR propensity and characteristics

Vent gas composition and combustion characteristics

Module, Unit, and Installation Level Testing

Experimental Approach:

- LIB TR initiation in a controlled-atmosphere bomb
- Gas capture via catch tank and subsequent compositional analysis (GC-MS) •
- Fundamental combustion measurements with: a) captured TR vent gas

b) emulated gas compositions

Experimental measurements: flammability limits, flame speed, explosion pressure, etc.

NERY LABORATORY

A&M ENGINEERING EXPERIMENT STATION

- Texas A&M University
 - Coauthors: Tatyana M. Atherley (MS), Dr. Olivier Mathieu, and Dr. Eric L. Petersen
 - Undergraduate Research Team: Christian Landry, Ritika Bhattacharjee, Cynthia Kunz, Alexis Cole
 - J. Mike Walker '66 Department of Mechanical Engineering
 - Turbomachinery Laboratory
- CNRS ICARE Orléans Dr. Nabiha Chaumeix et al.
- NASA JSC Dr. Eric D. Darcy, John 'Jacob' Darst, and Dr. William Q. Walker
- NREL Dr. Donal P. Finegan

ersen nia Kunz-Alexis Cole

LIB Thermal Runaway and Combustion Research at Texas A&M University

James C. Thomas, Tatyana M. Atherley, Olivier Mathieu, and Eric L. Petersen

TEES Turbomachinery Laboratory J. Mike Walker '66 Department of Mechanical Engineering Texas A&M University

TEXAS A&M UNIVERSITY

TURBOMACHINERY LABORATORY

TEXAS A&M ENGINEERING EXPERIMENT STATION

DEPARTMENT OF MECHANICAL ENGINEERING

James 'Chris' Thomas, Ph.D. Postdoctoral Research Associate, Instructor **Propulsion Laboratory** TEES Turbomachinery Laboratory

3123 TAMU College Station, TX 77843

Cell. 210.859.8537 James.Chris.Thomas@tamu.edu | ChrisThomas2009@live.com linkedin.com/in/JamesChrisThomas researchgate.net/profile/James Thomas 29

