

Lithium-ion Batteries with Tri Fluorinated Electrolyte for Low Temperature Space <u>Applications</u>

Dr. Vilas Pol Purdue University School of Chemical Engineering (765) 494-0044, <u>vpol@purdue.edu</u>

Dr. Thomas Adams Naval Surface Warfare Center Crane Division (440) 897-6801, <u>thomas.e.adams7.civ@us.navy.mil</u>

Dr. Leon L. Robert, Jr Brigadier General, U.S. Army (Retired); Professor Emeritus, United States Military Academy Contractor and Professor of Practice, Purdue Military Research Institute 806-341-5020, robert9@purdue.edu

> Ethan Adams Purdue University School of Chemical Engineering adams496@purdue.edu

> > Date: 11/17/21

Li-Ion Battery (LIB) Importance

- Highest energy density of viable electrochemical systems
- Low self-discharge and irreversible capacity loss allow to perform for several years
- Low cost to energy storage

Current Challenges

- Instability of Solid Electrolyte Interphase (SEI)
- **Dendrite growth** from anode at high rate or long cycle life
- Kinetic limitations on charging rates
- Narrow optimal temperature operating window between (0°C to 40°C)

Solid Electrolyte Interphase (SEI)

Dendrite growth at high rate or cycles

Kinetic limitations for charging speeds

Why do we need low temperature application?

NASA Aerospace Battery Workshop

Why do we need low temperature application?

Commercial

Battery

Current Problems

4 Main Areas of Focus

- High resistance for Li ion in electrode
- Lithium plating due to polarization of anode
- Reduced Li ion conductivity through electrolyte
- 4. Increased charge transfer resistance at interphase

N Chawla, Batteries (2019)

Electrolyte Solvation Mechanism VASA Aerospace for Reduced Charge Transfer Battery Workshop

Typical Carbonate Solvent Shell

- Desolvation shell strongly held together
 - High affinity btw solvent molecule and Li⁺

Cathode

together

Electrolyte Solvation Shell

Solvation Shell

- Raman spectra was collected for COM, F-FFN, T-FFN
 - SSIP- Solvent Shared Ion-Pairing
 - CIP- Contact Ion Pair
 - AGG- Aggregates
- Can fit spectra with known peaks for SSIP,
 CIP, AGG for each salt to tell relative weights
- T-FFN
 - TFSI- 45.1% (740 cm⁻¹)
 - CIP- 30.4% (745 cm⁻¹)
 - AGG- 24.5% (750 cm⁻¹)
- F-FFN
 - FSI- 0.5% (720 cm⁻¹)
 - CIP- 27% (732 cm⁻¹)
 - AGG- 72.5 (746 cm⁻¹)

• Predicted Solvation Structures

- COM- Typical EC/DEC shell with some LiPF₆
- T-FFN High fraction of free TFSI⁻ so shell made up of FEC with some FEMC
- F-FFN- High incorporation of FSI⁻ with FEC
 & FEMC weakening interaction forces

NASA Aerospace Battery Workshop

F-FFN Solvation Shell

Electrolyte Characterization

Good

Solvation Shell

- Desire a less tightly bound together one as at low temperatures this is ratelimiting step
 - Desolvation energy of F-FFN is
 ~ ½ of the COM

• Conductivity

- At temperatures below -20°C conductivity of Purdue electrolyte (F-FFN) is greater then commercial (COM)
 - Expected due to LiPF₆ and high dipole moment carbonates

Internal Resistances

- R_{CEI} and R_{CT} separate as R_{CT} is more strongly affected by temperature
 - * From -40°C to -50°C R_{CEI} increases by factor of 5.5, R_{CT} by factor of 11.42
- F-FFN has 40% of T-FFN's R_{CT} at -50°C while COM's is larger at -40°C

NASA Aerospace Battery Workshop

Electrochemical Performance

- Electrolyte Stability
 - Cell Configuration:
 - LSV= SS|Celgard|Li
 - CV = Li | Celgard | LFP
 - All electrolytes are stable up to 4.2V with 5 CV cycles of F-FFN [2.5V-4.2V] showing stability

• Cycling

- Cell Configuration: Li|Celgard|LFP
- COM:
 - At -40 °C retains 11% capacity
 - 0.5V Polarization
- T-FFN:
 - At -50 °C retains 20% capacity
 - 0.35V Polarization
- F-FFN:
 - At -50 °C retains 61% capacity
 - 0.15V Polarization

NASA Aerospace Battery Workshop

Summary and Future Plans

- 1. Successfully generated and cycled a LFP | Li half-cell using novel fluorinated electrolyte
 - F-FFN had superior performance to Commercial electrolyte: higher capacity retention, lower polarization, and lower desolvation energy at subzero temps.
- 2. Determined that LiFSI is the optimal salt for LIB performance within our temperature operating window
 - LiFSI compared to LiTFSI and LiPF6 had better conductivity, capacity retention, desolvation energy
- 3. Currently testing a full cell coin cell using a Graphite | LFP setup so can be scaled up for real world applications
 - Important to our goal of producing a >200 Wh kg⁻¹ pouch cell and to show promise in commercialization and application
- 4. Build pouch cells and evaluate
 - Will generate pouch cells at BIC before running the necessary electrochemical and thermal tests
- 5. Demonstrate battery pack's effectiveness at high and low temperatures
 - Combined with thermal and shock testing which is important for designing of proper safety and mitigation strategies.

Aerospac

RECENT PUBLICATIONS, PATENTS, AWARDS

- 1. E. Adams, D. Gribble, M. Parekh, T. Adams, V. G. Pol, "Low Temperature Performance Facilitated by a Ternary Fluorinated Electrolyte for Lithium-ion Batteries", *under preparation*
- 2. C. Jamison, Thomas Adams, V. G. Pol, "Lithium-Ion Battery Testing Capable of Simulating Submarine Climates", *under preparation*

Conference Talks or Presentations

- Pol "Are Rechargeable Batteries Playing Significant Role in our Lives, Safely?" Workshop on Thin Film Technologies for Sensors and Opto-electronic Applications, Indian Institute of Information Technology, Allahabad, India, July 17, 2021.
- Pol "Li-metal Batteries: Are they Thermally Safe?", 11th Virtual Battery Safety Summit, June 30, 2021.
- Pol "Can you Live without me? -Rechargeable Batteries!", International Conference on Fundamental and Applied Sciences, Hazarimal Somani College, Chowpatty, Mumbai, India, March 24, 2021.

<u>Awards</u>

- Pol Purdue University Outstanding Engineering Teachers, Spring 2021
- Pol AIChE Excellence in Process (Microwave) Development Research Award (2021)
- Pol TMS Light Metals, Extraction and Processing division's Energy Best Paper Award, The Minerals, Metals & Materials Society (2021)
- Adams Ethan Summer 2021 Naval Research Enterprise Internship Program (NREIP) intern, Philadelphia.

Aerospace

Battery

Thank you all for listening

This work is funded by

