

South 8 Technologies

Next Generation Energy Storage Devices

NASA Battery Workshop Huntsville, AL November 15th, 2017

Speaker: Dr. Cyrus S. Rustomji

Li-Ion Battery

Exploration of New Solvents

Н 2.20				N		0		F									He
Li 0.98	Be 1.57			3.0)4	3.	44	3	.98			2.04	2.05	N 3.04	0 3.44	F 3.98	Ne
Na 0.93	Mg 1.31													P 2.19	S 2.58	CI 3.16	Ar
K 0.82	Ca 1.00	Sc 1.36	Ti 1.54	V 1.63	Cr 1.66	Mn 1.55	Fe 1.83	Co 1.88	Ni 1.91	Cu 1.90	Zn 1.65	Ga 1.81	Ge 2.01	As 2.18	Se 2.55	Br 2.96	Kr 3.00
Rb 0.82	Sr 0.95	Y 1.22	Zr 1.33	Nb 1.6	Mo 2.16	Tc 1.9	Ru 2.2	Rh 2.28	Pd 2.20	Ag 1.93	Cd 1.69	In 1.78	Sn 1.96	Sb 2.05	Te 2.1	I 2.66	Xe 2.6
Cs 0.79	Ba 0.89	*	Hf 1.3	Ta 1.5	W 2.36	Re 1.9	Os 2.2	lr 2.20	Pt 2.28	Au 2.54	Hg 2.00	TI 1.62	Pb 2.33	Bi 2.02	Po 2.0	At 2.2	Rn
Fr 0.7	Ra 0.9	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
*	La 1.1	Ce 1.12	Pr 1.13	Nd 1.14	Pm 1.13	Sm 1.17	Eu 1.2	Gd 1.2	Tb 1.1	Dy 1.22	Ho 1.23	Er 1.24	Tm 1.25	Yb 1.1	Lu 1.27		
**	Ac 1.1	Th 1.3	Pa 1.5	U 1.38	Np 1.36	Pu 1.28	Am 1.13	Cm 1.28	Bk 1.3	Cf 1.3	Es 1.3	Fm 1.3	Md 1.3	No 1.3	Lr 1.3		

Exploration of New Solvents

= Toxicity

= Electrochemical Stability

Liquefied Gas Solvents

Moderate Pressures Natural gas vehicles ~25 Mpa Ni-Hydrogen Battery ~6.5 MPa

Calculated via DFT at the B3LYP/6-31+g(d,p) level of theory.

Should have excellent electrochemical stability window.

High $\varepsilon_r \cdot \eta^{-1}$ factor \rightarrow Relatively high electrolytic conductivity.

Liquefied Gas Electrolyte

Liquefied Gas Electrolyte

Liquefied Gas Electrolyte

Kraus, Charles A., Physical Review (Series I) 18.2 (1904): 89.

Rustomji et al., Science 356, 1351 (2017)

E / V vs. Pt

Eox

2.87

2.47

гот

6.83

5.70

0.1 M TEABF, in Difluoromethane

Sweep Rate = 1 mV·s⁻¹

WE, CE, RE = Pt

Liquefied Gas Electrolyte

5 mA·cm⁻²

Electrochemical Capacitor

1M TEABF₄ in Acetonitrile, 0.5 M TEABF₄ in Difluoromethane

- Stable at increased voltages \rightarrow 23% Increase in energy density
- Demonstrated over wide temperature window -80 to +65 °C
- Low-Flammability & Non-Toxic Electrolyte
- Temperature performance verified by National Renewable Energy Lab (NREL)

Electrochemical Capacitor

Difluoromethane is an *excellent* solvent for electrochemical capacitors.

Can we solubilize Li salts for batteries as well???

Intrinsic Acid–Base Properties of Molecules. Binding Energies of Li⁺ to π - and n-Donor Bases

Lithium Liquefied Gas Electrolyte Lithium Metal Soak Test

Fluoromethane

Decomposed after ~20 days

Fluoroethane

Decomposed after ~2 hrs

Fluoropropane Decomposed after ~3 hrs

All solvents decomposed Li metal into LiF and Alkyl Lithium components...

Can we stabilize Li Metal to run electrochemical tests??

Li Metal Soaked in Fluoromethane

Li Metal Soaked in Fluoromethane : Carbon Dioxide 19:1

LiCoO₂ Cathode

- Stable with 4-V LiCoO₂ cathode
- Excellent low temperature performance down to -60 °C
- Temperature performance verified by National Renewable Energy Lab (NREL)

NMC Cathode

SOUTH 8 TECHNOLOGIES Next Generation Energy Storage Devices

Time (h)

~99.9% efficiency on 4.5 V NMC No aluminum etching, even with LiTFSI (protective AIF₃ layer?)

Rustomji et al., Unpublished

Lithium Metal Anode

Stainless W.E. After 400 Cycles

- ~97.5% stable efficiency, among highest reported
- Dendrite free surface

Lithium Metal Anode

Fluoromethane has all of these!!

1. Park, Min Sik, et al., Scientific reports 4 (2014): 3815.

2. J. Yamaki, et. al., Journal of The Electrochemical Society 141.3 (1994): 611-614.

3. L. A. Archer, et. al., Nature materials 13.10 (2014): 961-969.

Rustomji et al., Science 356, 1351 (2017)

NextGen Lithium Electrolyte

First electrolyte demonstrated to be compatible with lithium metal and 4-V cathodes.

Liquefied Gas - Safety

Liquefied Gas - Safety

Liquefied Gas - Safety

Cell is punctured and electrodes are shorted.

A breakthrough in electrolyte chemistry that offers...

<u>Lithium Battery</u>

- Ultra-low temperature operation down to -60 °C
- Non-toxic solvent
- Increased safety through mitigation of thermal runaway
- Increase in energy density
 - Li Metal anode
 - 4.5 V NMC Cathode

Electrochemical Capacitor

- 3.0 V Operation
- Temperature down to -120 °C
- Low flammable electrolyte
- Non-toxic solvent

