

PROPULSION & POWER DIVISION NASA Johnson Space Center, Houston, Texas

Lessons Learned Maturing Thermal Runaway Tolerant Lithium Ion Battery Designs

S. Russell / E. Darcy EP5/Power Systems Branch

November 14, 2017

S. Russell

Introduction

- This presentation provides lessons learned maturing three Passive Propagation Resistant Li-Ion battery designs from lab environment (TRL 3-4) to space qualified (TRL 8)
 - Lithium Ion Pistol Grip Tool Battery (LPGT), 89Wh
 - Lithium Ion Rechargeable EVA Battery (LREBA), 400Wh
 - Lithium Ion Battery for EMU (LLB-2), 670Wh
- Design decisions, materials and methods of construction, and unintended consequences are discussed

Presenter

Overview

Date

- Development activity provided a solution set for achieving PPR
- Each battery presented a unique development challenge
 - LPGT required gas flow and spark arresting screen development
 - LREBA required cell vent area material selection and design
 - LLB-2 required conductive interstitial development
- Designs were transitioned to flight development once PPR achieved
 - Mission specific feature sets were incorporated
 - Some solutions were challenged requiring PPR reverification
- Five key design drivers were satisfied
 - Side wall rupture prevented by cell selection
 - Adequate cell spacing maintained by cell capture plates
 - Cells/Wiring protected from hot gas by sleeving for large cell spacing or interstitial and sleeving for narrow cell spacing
 - Paralleled cells are individually fused by fusible links or fuses
 - Spark/Flame release prevented by tortuous path and vent screens

NASA Johnson Space Center, Houston, Texas

Design Overview

Presenter S. Russell

Date 14 Nov 2017 Page 4

LLB-2 Thermal Runaway Propagation Mitigation Video

Design Decisions

Presenter S. Russell

Date 14 Nov 2017 Page 5

 Effect of vented product exposure during single cell thermal runaway testing has been demonstrated

Effect of Garment Material Exposure to Externally Vented Product during Single Cell Failure

Exposed

Not Exposed

Decision Consequence

- Date 14 Nov 2017 Page 6
- Selecting a conductive interstitial requires material selection rigor
 - State of the art, high temperature, high strength epoxy can form "amine blush" during cure which increases humidity sensitivity

Decision Consequence

- Date 14 Nov 2017 Page 7
- Selecting a conductive interstitial requires material selection rigor
 - Electrical properties of high pot life material may not conform to specification data sheet values over all bond thicknesses
 - Coupon testing can verify stated performance values for volume resistivity of bonding materials
 - Coupons prepared using glass beads to maintain bond thickness
 - Can show effects of filler material in long pot life materials

Two aluminum plates separated by a narrow gap of epoxy when tested with a DMM:

- 1. < 1 Ω prepared using best practices
- 2. < 1 Ω using battery assembly method
 - > 550 M Ω (500VDC IR) no filler (different epoxy)
- 4. < 1 Ω low end of allowed hardener
 - < 1 Ω high end of allowed hardener

PPR (Re)Verification

Date

- Development team provided a repeatable, lab-scale solution
- Each solution was evolved to satisfy mission requirements
- Final design was assessed for applicability of lab-scale results
 - LPGT preserved development design and did not require retest
 - LREBA required retest due to ceramic bushing removal
 - Three tests were performed at different trigger locations
 - LLB-2 required PPR verification of final flight assembly
 - Initial test showed spark release
 - Short side fasteners and cover "lip" were added to secure joint and increase leak path tortuosity
 - PPR and spark retention verified with top corner cell tests
 - Reverification following epoxy selection is under assessment

Future Considerations

Date

- 14 Nov 2017 Page 9
- Develop methods to enhance LREBA-like solutions including
 - Impact tolerant thermal ground plane in flat pack designs
 - Initial heat spreader designs performed well, but LREBA has unique and severe external load case which must be tolerated without crushing cell or increasing battery thickness
 - Internal venting (head-to-head) may need to be considered
 - Reduce dependency on garment containment
 - Incorporate spark arresting features at housing exit or repackage/reorient cells to allow gas expansion within housing
- Reduce specific/gravimetric energy of battery designs
 - Assess external heating for unhoused heat sink design
 - Optimize dimensional recommendations for cell vent region
- Minimize reliance on adhesive bonding for structural integrity
- Assess scalability of energy PPR solutions to power designs

Acknowledgements

- The following individuals are acknowledged for supporting, and in many cases, performing this work:
 - NESC/EP EVA Battery Thermal Runaway Development Team
 - C. Ianello, E. Darcy, R. Button, G. Bayles, D. Doughty, et al
 - NESC/JSC M&P
 - B. Jenson, M. Fowler, M. Pedley
 - EVA Battery GFE Team
 - F. Davies, F. Riman, D. Nguyen, B. Dolan, C. Clark, J. Trevino, C. Chang, I. Zaid, J. Rogers, B. Bohot, M. Allen
 - JSC/ESTA Test Team
 - L. Baldwin, D. Lenoir, P. Sanchez, H. Bravo, T. Doran, C. Situ
 - EVA Office, Safety, Sustaining, and System Management
 - S. Cox, T. Tripathi, R. Comin, S. Myers, D. Zupan, E. Hovan, M. Andrews, P. Keilich, A. Haidari, S. Murray, R. Boyles, S. Kunkel