

LEO Cycling Performance after Zero Volt Storage of 8 Series Test Module with EnerSys Lithium Ion Chemistry for the Aerospace Application

Hiroshi Nakahara, Ryo Tamaki, Blake Cardwell, Grant Farrell, Ben Scott, Kevin Schrantz

EnerSys Proprietary

ABSLOQUALLION

Outline

1. History of product development in EnerSys Advanced Systems (EAS) – ABSL – Quallion

2. Introduction of ZeroVolt technology (Cell level tests)

- 1. ZeroVolt chemistry design verification
- 2. ZeroVolt cell characterization for aerospace application

3.8 cell series module evaluation

- 1.0V storage characterization for 4 months
- 2. Module characterization during 20% DOD LEO cycling after 0V storage

EnerSys Proprietary

EnerSys Advanced Systems

\$100M Division Consisting of 6 Business Units

- Space
 - Launch Vehicles
 - Satellites
 - Manned
 - Interplanetary & Landers

• Aviation

- Fixed Wing & Rotary Aircraft including F16/18 & 777
- UAV's & Target Drones

• Munitions

- Missiles & Smart Weapons
- Guided Bombs & Projectiles
- Electronic Fusing
- Land
 - Combat, Tactical & Unmanned Ground Vehicles
 - Microgrids & Forward Operating Bases
- Sea
 - Submarines
 - Unmanned Underwater Vehicles
- Medical
 - Cochlear Implant Speech Processors
 - Neromodulation
 - Pumps

Aviation

Facility Locations

EnerSys Advanced Systems

- EAS Manufacturing Facilities
 - Sylmar, CA
 - Santa Clarita, CA
 - Longmont, CO
 - Warrensburg, MO
 - Horsham, PA
 - Tampa, FL
 - Culham Oxfordshire, UK
 - Newport, UK
 - Zwickau, DE

Product Line Main Manufacturing Locations Brands Technology Lithium-Ion Materials, Cells & ABSL/Quallion Longmont CO, Sylmar CA, Culham UK Space **Batteries** Medical Quallion Lithium-ion Cells & Batteries Sylmar CA Munitions EAS, Enser Lithium Primary/Liquid Reserve Horsham PA, Tampa FL Land & Sea Hawker/Armasafe Lead Acid (Thin Plate), NiZn Warrensburg MO, Zwickau DE Lead Acid (Thin Plate), Ni-Cd & Warrensburg MO, Sylmar CA, Aviation Hawker/Quallion Newport UK, Zwickau DE Lithium-ion

EnerSys Proprietary

EnerSys.

Overview of Battery Industry Battery Market Stratification

5

EAS / Quallion is a full service provider with expertise at all stratifications of the battery market.

EnerSys Proprietary

ABSL – Quallion – EnerSys Advanced Systems Aerospace Application

Quallion – EnerSys Advanced Systems Medical Application

EnerSys Proprietary

© 2013 EnerSys. Export or re-export of information contained herein may be subject to restrictions and requirements of U.S. export laws and regulations and may require advance authorization from the U.S. government.

EnerSys.

Single Cell Evaluation

- 1. ZeroVolt chemistry design verification (Comparison with conventional LIB)
- 2. ZeroVolt cell characterization for aerospace application
 - 1. 200mAh test cell, 0V storage + LEO cycling test
 - 2. 15Ah cell, low voltage storage + LEO cycling test
 - 3. 75Ah cell, low voltage storage + calendar life test

EnerSys Proprietary

Introduction of ZeroVolt Technology Comparison with Conventional LIB, Test Method

Test sample cell

- Quallion 18650 cell (Zero-Volt[™] technology)
- Sony 18650H2 cell (Hard carbon cell)

Test procedure

- 1. Capacity check to determine baseline capacity (before storage)
- The cells are cycled three times at room temperature according to the following standard procedures.
 - a) CC charge at C/2 rate to 4.2V
 - b) CV charge at 4.2V with a current cutoff of C/20
 - c) CC discharge at C/2 rate to 2.7V
- 2. Simulate 0V state by short-circuiting the cell with a 20 ohm resistor.
- 3. Storage at room temperature for 3 days.
- 4. Charge the cells at room temperature in two steps
- CC charge at C/200 rate to 3.0V
- CC charge at C/20 rate to 4.2V
- 5. Repeat the capacity check test from step 1 to determine the cell capacity after 0V storage.

EnerSys Proprietary

ZeroVolt Cell Characterization Before and After 3-day Storage at Zero Volt

ZeroVolt Cell Characterization Protocol for Aerospace Application

<u>Test cell</u>

- 200 mAh simulation cell
- Hermetic

 $50 \ \Omega$ resistor attached across the positive & negative terminals of SCS cell

Pre-0V storage

- 1. <u>Take ACIR/OCV measurements</u>
- 2. Capacity Check Cycling (2 cycles)
 - 1. Charge: CCCV 0.5C to 4.1 V, 0.05 C cutoff @ 23 °C
 - 2. Rest: 10 minutes
 - 3. Discharge: 0.5C to 2.7 V @ 23 °C
 - 4. Rest 10 minutes

OV storage

- 1. Characterization for Zero Volt Storage
 - 1. Discharge: 0.05C to 2.7 V @ 23 °C
 - 2. Rest 10 minutes
- 2. <u>Attach 50 Ω resistor across positive & negative terminals of SCS cells</u>
 - Incubator storage @ 23 °C for 14 or 29 months

Post-0V storage

- 1. <u>Remove 50 Ω resistor from SCS terminals</u>
- 2. Recovery from Zero Volt Storage, Characterization
 - 1. Charge: CCCV 0.005C (C/200) to 3.0 V @ 23 °C
 - 2. Charge: CCCV 0.05C (C/20) to 4.1 V @ 23 °C
 - 3. Rest: 10 minutes
 - 4. Discharge: 0.5C to 2.7 V @ 23 °C
 - 5. Rest 10 minutes
- 3. Run 2 cycles of capacity check
 - 1. Charge: CCCV 0.5C to 4.1 V, 0.05C cutoff @ 23 °C
 - 2. Discharge: CC 0.5C to 2.7 V @ 23 °C
- 4. Proceed to long-term cycling tests

11

EnerSys

Zero Volt Cell Characteristics in Aerospace Use 40% DOD LEO Cycle Performance after 0V Storage (29 months) wer/Full Solutions (200mAh wound type model cell)

12

QUALLION

ABSL

EnerSys Proprietary

Zero Volt Capability

Capacity Retention and Cell Voltage <u>after 0V Storage (49 months)</u> (QL015KA cell, 40% DOD LEO Cycle Performance)

EnerSys.

	Cell Voltage during Storage / Volts	Discharge Capacity / Ah		
		Before Storage	After Storage (49 months)	After 5000 cycles
X06H532	0.656	14.6	14.6	14.9
X06I004	0.180	14.7	14.4	14.5

Cell Voltage @ End of Discharge

Discharge Capacity

EnerSys Proprietary

© 2013 EnerSys. Export or re-export of information contained herein may be subject to restrictions and requirements of U.S. export laws and regulations and may require advance authorization from the U.S. government.

8 Series Module (200 mAh Test Cell) Characterization

1.0V storage characterization for 4 months

2. Module characterization during 20% DOD LEO cycling after 0V storage

EnerSys Proprietary

16

Scope of Work

- 1. To perform 0V storage with 200mAh simulation module configured in series of 8 cells*
- 2. To understand the influence of 0V storage with module configuration to electrochemical performance at pre-/post- 0V storage
- 3. To characterize the 8-cell module in 20% DOD LEO cycling after 0V storage

*Cell level characterization of 0V storage has been done separately. This study is extension of understanding 0V capability with ZeroVolt chemistry in application use.

EnerSys Proprietary

8S 200mAh Test Module Preparation ABSL QUALLION

EnerSys Proprietary

Cell Configuration & History of cells selected for 0 V Study:

- Form factor: 200mAh simulation cell (SCS cell)
- Feb ~ Mar/2010: Cell Assembly:

EnerSys.

17

ower/Full Solutions

(Cells under storage at 3.64 - 3.67 V for ~ 2 years before Module assembly and Module OV storage characterization)

- Jan/2012: •
- Jan ~ May/2012: 0V storage ٠
- Jun/2012~:

8S 200mAh Test Module **OV Characterization Protocol**

1. Take ACIR/OCV measurements

2. Capacity Check Cycling (2 cycles)

- 1. Charge: CCCV 0.5C until first cell reaches 4.1 V, C/20 cutoff @ 23 °C
- 2. Rest: 10 minutes
- 3. Discharge: 0.5C until first cell reaches 2.7 V @ 23 °C
- 4. Rest 10 minutes

3. DCIR Test (1 cycle)

- 1. Charge: CCCV 0.2C until first cell reaches 4.1 V, C/20 C cutoff @ 23 °C
- 2. Rest: 10 minutes
- 3. Discharge: 0.2 C for 30 minutes or to 2.7 V @ 23 °C
- 4. Pulse: 1C for 5 seconds
- 5. Repeat Discharge and Pulse until first cell reaches 2.7 V

4. Characterization for Zero Volt Storage

- 1. Discharge: 0.1C until first cell reaches 0 V @ 23 °C
- 2. Rest: 1 hour
- 3. Take ACIR/OCV measurements
- <u>Attach resistance across positive & negative terminals of module</u>
 <u>BS module: 400 Ω resistance (= 50 Ω per cell)</u>
- 5. Incubator storage @ 23 °C for specified period

6. Recovery from 0V storage

- 1. After removing resistors, take ACIR/OCV measurements
- 2. Charge: CC C/200 until first cell reaches 3.0 V
- 3. Charge: C/20 until first cell reaches 4.1 V
- 4. Discharge: CC 0.5C until first cell reaches 2.7 V

7. After 4 months, 0V storage, place modules on 20% DOD, LEO Cycling

Current across module with 2.7 V / cell when resistors are attached does not exceed 0.3 C rate

8S Module under 0V Storage

50 $\boldsymbol{\Omega}$ resistors in series across module terminals

© 2013 EnerSys. Export or re-export of information contained herein may be subject to restrictions and requirements of U.S. export laws and regulations and may require advance authorization from the U.S. government.

18

0V storage characterization for 4 months

EnerSys Proprietary

Characterization of Modules before 0V Storage, Month 4 **EnerSys**. Capacity Check Cycling, 8S Modules

8S Module, Module and Cell Voltage

- 1. Charge: CCCV 0.5C until first cell reaches 4.1 V, C/20 cutoff @ 23 °C
- Rest: 10 minutes 2
- Discharge: 0.5C until first cell reaches 2.7 V 3. @ 23 °Č
- Rest 10 minutes 4

EnerSys Proprietary

© 2013 EnerSys. Export or re-export of information contained herein may be subject to restrictions and requirements of U.S. export laws and regulations and may require advance authorization from the U.S. government.

ABSLOQUALLION

8S Module, Voltage and ΔV* vs. Time

 ΔV defined as the max. difference between cell voltages during cycling

EnerSys Proprietary

© 2013 EnerSys. Export or re-export of information contained herein may be subject to restrictions and requirements of U.S. export laws and regulations and may require advance authorization from the U.S. government.

ABSLOQUALLION

Modules after 0V Storage, Months 0 - 4

8S Module, Voltage and ΔV* vs. Time

* ΔV defined as the max. difference between cell during cycling

• Capacity Check Cycling (2 cycles)

- Charge: CCCV 0.5C until first cell reaches 4.1 V, C/20 cutoff @ 23 °C
- 2. Rest: 10 minutes
- Discharge: 0.5C until first cell reaches 2.7 V @ 23 °C
- 4. Rest 10 minutes

Max. ΔV among 8 cells were in 8S module:

- @ 50% DOD = 10 25 mV
- @ 100% DOD, 2.7 V = 360 480 mV

22

EnerSys Proprietary

Characterization of Modules after 0V Storage 8S Modules, Month 0

Rower/Full Solutions Cell Voltages during 0V Storage in Modules *

EnerSys Proprietary

© 2013 EnerSys. Export or re-export of information contained herein may be subject to restrictions and requirements of U.S. export laws and regulations and may require advance authorization from the U.S. government.

EnerSys.

Power/Full Solutions Discharge Curve Comparison in Month 0, 1, 2, 3, and 4

Discharge Curves

EnerSys.

Capacity Check Cycling Condition

- Charge: CCCV 0.5C until first cell reaches 4.1 V, C/20 cutoff @ 23 °C
- 2. Rest: 10 minutes
- Discharge: 0.5C until first cell reaches 2.7 V @ 23 °C
- 4. Rest 10 minutes

Discharge Capacity Retention, 8S Module:

No change during 0V storage

EnerSys Proprietary

© 2013 EnerSys. Export or re-export of information contained herein may be subject to restrictions and requirements of U.S. export laws and regulations and may require advance authorization from the U.S. government.

ABSL QUALLION

DC resistance vs. Depth-of-Discharge

ower/Full Solutions

EnerSys Proprietary

Performance Summary

During 0V storage for 4 months, the following were found at periodic characterization (capacity check cycles):

Discharge Capacity:

<u>100%</u> discharge capacity retention for 4 months at 0V

Discharge capacity: from 0.183 Ah to 0.183 Ah

Maximum ΔV:

No change in voltage divergence among 8 cells

- □ Max ΔV @ 100% DOD= 360 480 mV
- Max. ΔV @ 50% DOD = 10 25 mV

DCIR:

EnerSys.

No change in DC resistance across a range of DOD during 0V storage for 4 months

AC-IR:

No change in AC-IR values was observed.

The test module demonstrated the 0V storage capability without any degradation.

EnerSys Proprietary

8S Module characterization during 20% DOD LEO cycling after 0V storage

(15,431 Cycles as of Nov. 2016)

EnerSys Proprietary

Discharge Capacity

SCS 8S Module: Module Discharge Capacity (Ah)

8S Module Characteristics under 20% DOD LEO Sys. Cycling after 0V Storage Discharge Capacity and End-of-Discharge Voltage

EnerSys Proprietary

© 2013 EnerSys. Export or re-export of information contained herein may be subject to restrictions and requirements of U.S. export laws and regulations and may require advance authorization from the U.S. government.

ABSL QUALLION

EnerSys.

8S Module Characteristics under 20% DOD LEO Cycling

after 0V Storage

Maximum ΔV between Cells at End-of-Discharge Voltage

End-of-Discharge Voltage

EnerSys Proprietary

© 2013 EnerSys. Export or re-export of information contained herein may be subject to restrictions and requirements of U.S. export laws and regulations and may require advance authorization from the U.S. government.

30

EnerSys.

8S Module Characteristics under 20% DOD LEO Cycling after 0V Storage Cell and Module Discharge Curves

ABSLOQUALLION

EnerSys Proprietary

© 2013 EnerSys. Export or re-export of information contained herein may be subject to restrictions and requirements of U.S. export laws and regulations and may require advance authorization from the U.S. government.

8S Module Characteristics under 20% DOD LEO Cycling after 0V Storage DC Resistance Dependency on DOD

EnerSys Proprietary

8S 200mAh Test Cell Module, 20% DOD LEO Cycling ABSL QUALLION Performance Summary

During 20% LEO cycling after 4 months of 0V storage with 8S module, the following were observed:

Discharge Capacity Retention:

No change after 12,500 cycles:

Discharge capacity in the 8S module: from 0.183 Ah to 0.185 Ah

Maximum ΔV during cycling:

No significant increase of cell voltage divergence in module during 15,451 cycles

Max ΔV @ end of charge	= 25 mV
Max. ΔV @ end of discharge	= 22 mV

DCIR:

No change in DC resistance of cells across a range of DOD after 12,500 cycles

➔ The test module demonstrated the superior LEO cycling performance for aerospace application after 0V storage.

EnerSys Proprietary

Contacts:

Business Development:

- Ben Scott, Longmont, Co, +1-720-438-4822, <u>ben.scott@enersys.com</u>
- Roger Carlone, Longmont, Co, +1-303-848-8042 roger.carlone@enersys.com

Technical:

- Blake Cardwell, Longmont, Co, +1-303-848-8047, blake.cardwell@enersys.com
- Ryo Tamaki, Sylmar, CA, +1-818-833-2028, ryo.tamaki@enersys.com
- Hiroshi Nakahara, Sylmar, CA, +1-818-833-2016, hiroshi.Nakahara@enersys.com
- Grant Farrell, Sylmar, CA, 818-833-2004, grant.farrell@enersys.com

EnerSys Proprietary