NASA Aerospace Battery Workshop

Integrating Model-Based Projection with Data-Driven Correction for Prognostics of All-Solid-State Battery-Supercapacitor Hybrid Devices

Works

Adam Thelen¹, Meng Li¹, Chao Hu^{1,2}, Elena Bekyarova³, Sergey Kalinin³, and Mohan Sanghadasa⁴

¹ Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA ² Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA ³ Carbon Solutions Inc., Riverside, CA 92507, USA

⁴ Aviation and Missile Center, US Army Combat Capabilities Development Command, Redstone Arsenal, AL 35898, USA

Overview

- Introduction to the battery aging tests
- What is remaining useful life (RUL)?
- Comparison of current RUL prediction methods
- RUL prediction with Gaussian Process
- Data-driven error correction
- Results and Discussion
- Conclusions and Future work

Capacity Fade of Hybrid Energy Storage Devices in Cycle Ageing Study

- All the ten hybrid energy storage devices (cells) were charged/discharged under C/5.
- The capacity fade trend of each cell is nonlinear and time-varying.

System Reliability & Safety Laboratory

SR.

Remaining Useful Life Definition

 Remaining Useful Life (RUL) is subjectively defined as the number of remaining cycles a battery cell can undergo before reaching 75% of its initial capacity (i.e., the end-of-life (EOL) limit).

Model-Based and Data-Driven RUL Prediction Methods

Model-Based/Data-Driven RUL Prediction Method

Flowchart of Integrated Model-Based/Data-Driven RUL Prediction Framework

Flowchart of Integrated Model-Based/Data-Driven RUL Prediction Framework

where t is the cycle number, α_t and β_t are the coefficients to be curve fit using all the online cell data up to cycle t.

A Gaussian process (GP) defines a probability distribution over a function, in our case, the trend functions M(t). It is denoted as

 $f(t) \sim GP(m(t), k(t, t'))$

where m(t) and k(t, t') are the trend function and covariance function of the GP model

$$m(t) = \mathbf{E}\left[f(t)\right]$$
$$k(t,t') = \mathbf{E}\left[\left(f(t) - m(t)\right)\left(f(t') - m(t')\right)^{T}\right]$$

 \widehat{RUL}_{CI}

Example figure showing the probabilistic Gaussian Process projection using the underlying function $C_t = 1 - \alpha_t t^{\beta_t}$ (Model 2)

SRSL System Reliability & Safety Laboratory

SRSL System Reliability & Safety Laboratory

RUL prediction results with GP using Model 1 (left) and Model 2 (right) as the trend functions on Cell 1

SRSL System Reliability & Safety Laboratory

Flowchart of Integrated Model-Based/Data-Driven RUL Prediction Framework

Flowchart of Integrated Model-Based/Data-Driven RUL Prediction Framework

Notes

- Offline data includes the capacity measurements and the true RULs of the offline cells.
 - The data-driven method is trained using the offline data.
- Online data includes the capacity measurements of an online cell up to the current cycle.

Model-Based/Data-Driven RUL Prediction Method

Data-Driven Model – Error Prediction Results

Data-Driven Error Correction Results

Data-Driven Error Correction Results – Model 1

SRSL System Reliability & Safety Laboratory

Data-Driven Error Correction Results – Model 2

Results for Different Data-Driven Error Correction Methods

- Data-driven error correction improves the overall prediction accuracy
 - Compared to purely model-based projection (GP)

	Method	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 7	Cell 8	Cell 9	Cell 10	Average	
		RMSE	RMSE										
Model 1	GP	77.7	49.8	65.5	59.8	161.3	39.9	59.3	59.3	81.3	52.3	70.6	
	GP-LSTM-RMSE	22.9	47.5	20.9	32.4	105.9	42.5	24.8	48.4	36.6	28.1	41.0	
	GP-LSTM-KL	42.8	31.3	35.1	18.8	131.0	26.6	27.9	48.4	47.7	15.9	42.6	
	GP-LSTM-NLL	36.2	24.1	23.6	18.0	132.1	41.2	26.7	44.3	42.0	16.4	40.5	VO
7	GP-RVM	11.8	28.4	22.3	17.4	90.8	44.4	22.2	32.3	11.3	23.0	30.4	$\left \right\rangle$
/	GP-Ridge Regression	22.7	45.1	16.4	23.5	101.7	52.5	28.8	37.1	23.3	26.4	37.7	
/													
Model 2	GP	40.8	23.3	38.8	35.3	52.8	62.6	63.7	78.4	44.9	34.7	47.5	
	GP-LSTM-RMSE	15.2	34.9	20.8	17.2	19.3	21.5	21.8	35.8	10.1	17.9	21.5	
	GP-LSTM-KL	21.7	54.3	37.1	36.4	18.3	21.4	24.6	36.5	28.4	38.1	31.7	
	GP-LSTM-NLL	15.7	33.9	20.5	18.7	24.1	19.8	22.8	37.5	9.2	17.3	21.9	
	GP-RVM	11.2	35.6	14.4	16.3	22.6	23.4	21.9	45.2	8.8	19.8	21.9	
	GP-Ridge Regression	11.9	33.5	18.9	17.9	20.1	23.4	23.6	40.6	8.8	19.1	21.8	

Color-coded by Cell

Flowchart of Integrated Model-Based/Data-Driven RUL Prediction Framework

Notes

- Online data includes the capacity measurements of an online cell up to the current cycle.
- Offline data includes the capacity measurements and the true RULs of the offline cells.
 - The data-driven method is trained using the offline data •

Flowchart of Integrated Model-Based/Data-Driven RUL Prediction Framework

Notes

- Online data includes the capacity measurements of an online cell up to the current cycle.
- Offline data includes the capacity measurements and the true RULs of the offline cells.
 - The data-driven method is trained using the offline data

Data-Driven Error Correction Ensemble Methods

Weighted Average Method

Model 1: $x \sim N(\mu_x, \sigma_x^2)$

Model 2: $y \sim N(\mu_y, \sigma_y^2)$

Corrected Average $\triangleq \alpha x + (1 - \alpha)y$

 $= N \big(\alpha \mu_x + (1-\alpha) \mu_y, \ \alpha^2 \sigma_x^2 + (1-\alpha)^2 \sigma_y^2 \big)$

Equal Weight Average: $\alpha = 0.5$

Note: Also investigating optimization-based weighting methods

SRSL Sys

Equal Weight Average of Data-Driven Error Correction – Results

SRSL System Reliability & Safety Laboratory

Data-Driven Direct Mapping and Corrected Average Comparison

• The ensemble further improves the accuracy of the error correction.

— This could be further improved with more models, or weight optimization

	Method	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 7	Cell 8	Cell 9	Cell 10	Average	
_		RMSE	RMSE										
	Direct Map-LSTM	16.3	52.6	9.5	9.8	19.4	33.0	26.6	13.3	9.7	22.6	21.3	/
	Direct Map-RVM	11.8	28.6	6.8	16.6	13.3	28.1	20.7	30.4	7.9	13.8	17.8	
	Direct Map-BRR	11.8	31.7	8.2	18.4	7.9	31.7	21.3	23.8	8.0	16.5	17.9	
Model 1	GP-RVM	11.8	28.4	22.3	17.4	90.8	44.4	22.2	32.3	11.3	23.0	30.4	
Model 2	GP-RVM	11.2	35.6	14.4	16.3	22.6	23.4	21.9	45.2	8.8	19.8	21.9	Ζ
												\ge	
	GP-RVM Ensemble	10.5	25.4	10.7	13.9	40.7	32.8	21.2	30.3	7.8	13.8	20.7)

Color-coded by Cell

Data-Driven Direct Mapping and Corrected Average Comparison

Data-Driven Direct Mapping and Corrected Average Comparison

• Cell 2 RUL prediction performance is poor across the board. . .why?

	Method	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 7	Cell 8	Cell 9	Cell 10	Average	
		RMSE	RMSE										
Model 1	GP	77.7	49.8	65.5	59.8	161.3	39.9	59.3	59.3	81.3	52.3	70.6	
	GP-LSTM-RMSE	22.9	47.5	20.9	32.4	105.9	42.5	24.8	48.4	36.6	28.1	41.0	
	GP-LSTM-KL	42.8	31.3	35.1	18.8	131.0	26.6	27.9	48.4	47.7	15.9	42.6	
	GP-LSTM-NLL	36.2	24.1	23.6	18.0	132.1	41.2	26.7	44.3	42.0	16.4	40.5	VO
_	GP-RVM	11.8	28.4	22.3	17.4	90.8	44.4	22.2	32.3	11.3	23.0	30.4	$\left \right\rangle$
/	GP-Ridge Regression	22.7	45.1	16.4	23.5	101.7	52.5	28.8	37.1	23.3	26.4	37.7	
Model 2	GP	40.8	23.3	38.8	35.3	52.8	62.6	63.7	78.4	44.9	34.7	47.5	
	GP-LSTM-RMSE	15.2	34.9	20.8	17.2	19.3	21.5	21.8	35.8	10.1	17.9	21.5	
	GP-LSTM-KL	21.7	54.3	37.1	36.4	18.3	21.4	24.6	36.5	28.4	38.1	31.7	
	GP-LSTM-NLL	15.7	33.9	20.5	18.7	24.1	19.8	22.8	37.5	9.2	17.3	21.9	
	GP-RVM	11.2	35.6	14.4	16.3	22.6	23.4	21.9	45.2	8.8	19.8	21.9	
	GP-Ridge Regression	11.9	33.5	18.9	17.9	20.1	23.4	23.6	40.6	8.8	19.1	21.8	

Color-coded by Cell

Training Data Investigation: Model 2 Cell 2

Conclusions and Future Work

Conclusions

- Using both model-based and data-driven methods allows us to dynamically adjust between the two in the final output.
 - Useful when we know one method will perform better in a certain setting. i.e. end of life convergence.
- An ensemble of models provides increased accuracy.

Future Work

- Develop an algorithm to weigh the error correction based on data-driven model confidence.
 - Examine methods to detect outliers in a dataset (e.g. Cell 2) and quantify their levels of deviation.

Acknowledgements

 This work was supported by the US Army Small Business Innovation Research (SBIR) program under contract W31P4Q-16-C-0079 (PI: Dr. Elena Bekyarova at Carbon Solutions, Inc.).

IOWA STATE UNIVERSITY

SRSL System Reliability & Safety Laboratory

Thank You!

Q/A

System Reliability & Safety Laboratory