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data extract (left) and figure from K.A. Severson, et al., Nature Energy, 2019
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internal impedance and charging policy (Supplementary Figs. 3 
and 4). Voltage, current, cell can temperature and internal resis-
tance are continuously measured during cycling (see Methods for 
additional experimental details). The dataset contains approxi-
mately 96,700 cycles; to the best of the authors’ knowledge, our 
dataset is the largest publicly available for nominally identical com-
mercial lithium-ion batteries cycled under controlled conditions 
(see Data availability section for access information).

Fig. 1a,b shows the discharge capacity as a function of cycle 
number for the first 1,000 cycles, where the colour denotes cycle 
life. The capacity fade is negligible in the first 100 cycles and accel-
erates near the end of life, as is often observed in lithium-ion bat-
teries. The crossing of the capacity fade trajectories illustrates the 
weak relationship between initial capacity and lifetime; indeed, 
we find weak correlations between the log of cycle life and the 
discharge capacity at the second cycle (ρ = −0.06, Fig. 1d) and  
the 100th cycle (ρ = 0.27, Fig. 1e), as well as between the log of cycle 
life and the capacity fade rate near cycle 100 (ρ = 0.47, Fig. 1f). 
These weak correlations are expected because capacity degrada-
tion in these early cycles is negligible; in fact, the capacities at cycle 
100 increased from the initial values for 81% of cells in our dataset  
(Fig. 1c). Small increases in capacity after a slow cycle or rest period 
are attributed to charge stored in the region of the negative elec-
trode that extends beyond the positive electrode56,57. Given the lim-
ited predictive power of these correlations based on the capacity  

fade curves, we employ an alternative data-driven approach that 
considers a larger set of cycling data including the full voltage 
curves of each cycle, as well as additional measurements including 
cell internal resistance and temperature.

Machine-learning approach
We use a feature-based approach to build an early-prediction model. 
In this paradigm, features, which are linear or nonlinear transforma-
tions of the raw data, are generated and used in a regularized linear 
framework, the elastic net58. The final model uses a linear combina-
tion of a subset of the proposed features to predict the logarithm 
of cycle life. Our choice of a regularized linear model allows us to 
propose domain-specific features of varying complexity while main-
taining high interpretability. Linear models also have low computa-
tional cost; the model can be trained offline, and online prediction 
requires only a single dot product after data preprocessing.

We propose features from domain knowledge of lithium-ion 
batteries (though agnostic to chemistry and degradation mecha-
nisms), such as initial discharge capacity, charge time and cell can 
temperature. To capture the electrochemical evolution of individ-
ual cells during cycling, several features are calculated based on 
the discharge voltage curve (Fig. 2a). Specifically, we consider the 
cycle-to-cycle evolution of Q(V), the discharge voltage curve as a 
function of voltage for a given cycle. As the voltage range is identi-
cal for every cycle, we consider capacity as a function of voltage, as 
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Fig. 2 | High performance of features based on voltage curves from the first 100 cycles. a, Discharge capacity curves for 100th and 10th cycles for a 
representative cell. b, Difference of the discharge capacity curves as a function of voltage between the 100th and 10th cycles, ΔQ100-10(V), for 124 cells. 
c, Cycle life plotted as a function of the variance of ΔQ100-10(V) on a log–log axis, with a correlation coefficient of −0.93. In all plots, the colours are 
determined based on the final cycle lifetime. In c, the colour is redundant with the y-axis. In b and c, the shortest lived battery is excluded.
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Fig. 3 | Observed and predicted cycle lives for several implementations of the feature-based model. The training data are used to learn the model 
structure and coefficient values. The testing data are used to assess generalizability of the model. We differentiate the primary test and secondary test 
datasets because the latter was generated after model development. The vertical dotted line indicates when the prediction is made in relation to the 
observed cycle life. The inset shows the histogram of residuals (predicted – observed) for the primary and secondary test data. a, ‘Variance’ model using 
only the log variance of ΔQ100-10(V). b, ‘Discharge’ model using six features based only on discharge cycle information, described in Supplementary Table 
1. c, ‘Full’ model using the nine features described in Supplementary Table 1. Because some temperature probes lost contact during experimentation, four 
cells are excluded from the full model analysis.
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• Physical models are better for making predictions 
about battery performance / health in variable 
operating conditions

• Physical models can get very complex

P2D model: 35 
parameters, no 
cell degradation 
included



Energy Systems and Materials Simulation

• Activity coefficients in cathode & anode
• Transport parameters in cathode & anode
• Cathode-electrolyte interfacial equilibrium, resistance & capacitance
• Anode-electrolyte interfacial equilibrium, resistance & capacitance
• Electrolyte transport parameters

Cell operation parameters (no degradation)

All are really functions of SOC / local 
concentrations / potentials
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ASSB cell-level model

characterization of the LLTO sample. Depending on the total
conductivity of LLTO, either charge transport in LLTO or in the
organic electrolyte determine EIS measurements in configuration B.
As long as ionic conductivity prevails in LLTO, configuration B is
dominated by the better conductive organic electrolyte and only a
dry sample (outside this cell) reveals the ion conductivity of LLTO.
However, already for small δ values, LLTO has a high electronic
conductivity (see results) and the electronic conductivity is measured
by the low-frequency axes offset in configuration B.

Results and Discussion

Galvanostatic titration and electronic conductivity.—In order to
precisely determine the reduction potential and the electronic
conductivity of LLTO as a function of the lithium chemical
potential, galvanostatic intermittent titration curves (U vs δ) of a
dense LLTO sheet of were determined as described in the

experimental section. After each rest step, an “in-plane” (Fig. 1b)
impedance spectrum was measured to between two Pt electrodes on
the LLTO sheet. First, we examine the titration curves of reduction
and oxidation. The pristine equilibrium voltage of the LLTO sheet is
ca. 3 V vs Li, which falls to ca. 2 V vs Li metal after the first step at δ
= 2 × 10−4, shown in Fig. 3.

Through a window in the titration cell, the optical changes of the
LLTO sheet during reduction could be monitored (s. Fig. 2). Clearly
visible, coloration starts from the two electrodes towards the center
of the LLTO sheet during the first lithiation steps. Upon further
reduction, the sample changes to a dark blue to black color. When
both coloration fronts start to overlap, electronic conduction
becomes measurable by impedance spectroscopy (see below). In
accordance with other studies5,15,16 we conclude that the darkening
reflects the nominal formation of TiTi′ due to Li insertion and thus of
electrons in the conduction band.

The titration curve acquired in the range δ < 0.012 (s. Fig. 3) has
a steep initial slope, and exhibits minimal hysteresis at below δ = 2
× 10−3. The formation of a very thin SEI or inhomogeneous
oxidation may be responsible for this slight discrepancy. The steep
voltage increase towards δ = 0 is in good agreement with the point-
defect chemical model. Therefore, it is reasonable to assume that the
faradaic efficiency of the charge/discharge is close to unity. Further,
the sample can be considered to be well equilibrated after each
reduction/oxidation step, at least above δ = 2 × 10−3.

Impedance spectra were collected in contact configuration B
(Fig. 1) for all levels of δ. The impedance spectrum of the dry
pristine sample (s. Fig. 4a) shows a steep linear rise at low
frequencies which is indicative for an ion conductor with ion
blocking electrodes (f > 10 Hz). In the medium frequency arc and
the onset of the high frequency arc reflect grain boundary and bulk
ionic conduction. In line with other literature,1,18 a bulk conductivity
of 1 × 10−3 S cm−1 can be estimated, the effective ionic
conductivity (including grain boundaries) is about 3 × 10−4 S
cm−1. In the cell with organic electrolyte (configuration B) the
high-frequency offset of a pristine sample represents the combined
conductivity of the LLTO sheet and the much more conductive
liquid LiPF6 electrolyte, so it is not representative for the LLTO
ionic conductivity. However, the impedance changes drastically
when LLTO becomes slightly reduced (s. Fig. 4). This is mainly
attributed to an increase of electron conductivity of LLTO, since the
Li ion conductivity of the LLTO does not change significantly with
increasing Li-content.5 It is shown in Fig. 4, that already for very
small degrees of reduction (δ = 6 × 10−4), the impedance spectrum
virtually reaches the x-axis at low frequencies - see Fig. 4. Further
discussions are based on the low frequency intercept resistance of
each spectrum, i.e. the DC resistance. Due to the ion blocking
electrodes, this value corresponds to the electronic conductivity.

Figure 2. Photographs of the LLTO sample with Pt stripe electrodes. Panel
(A) shows the pristine sample inside the air-tight measuring chamber. Panels
B and C show the coloration of the sample at δ = 4*10−4 and δ = 0.012,
respectively.

Figure 3. Galvanostatic titration curve, with reduction (black triangles) and
oxidation (black squares). The reduction and subsequent oxidation curves
coincide, except for the last few data points of the oxidation. This is
attributed to inhomogeneous oxidation of the sample, caused by insufficient
electron conductivity at the terminals when approaching the intrinsic
stoichiometry.

Figure 4. Nyquist-plots of the impedance response recorded at various Li
excess concentrations, including the (dry) pristine sample (black circles).
Panels (b)–(c) are a zoom in to visualize the smaller spectra recorded at δ >
0.0006.

Journal of The Electrochemical Society, 2023 170 050530
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neural networks are great for large input spaces 
like images and natural language

MM Waldrop, PNAS, 2019
M. Maiworm, et al., arXiv, 2019

Gaussian processes are better for small input 
spaces like most physical functions
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Figure 2: (a) BSS-ANOVA and (b) LSTM predictions vs. test set data for the water level height in
tank 1 of the cascaded tanks dataset. Shaded regions in (a) are 95% confidence bounds as estimated
from a draw of 40 curves.

The system is written

Ṡ = �BIS/NP (30)

İ = BIS/NP � �I (31)

Ṙ = �I (32)

where S(t) is the susceptible population, I(t) the infected, R(t) the recovered, B(t) is the transmis-
sibility rate (which we utilize as a forcing function), � is the recovery rate (which we leave fixed at
0.5) and NP is the total population. Because NP is fixed and S + I +R = NP , only two states are
independent, so the system dynamics can be captured by modeling only two of the three. We chose
I(t) and R(t).

The training data consists of 58 curves. All curves in the training set have a fixed B value ranging
from 0.5 to 9, in six intervals of 1.7. For each value of B there are 8-10 siumulations corresponding
to different initial conditions designed in such a way to provide coverage of the state space. (Exact
initial conditions used appear in the supplement.) Each simulation used NP = 1000.

The test data consists of 24 curves, each of which features a temporally changing transmissibility
B(t). There are three initial B0 values: 1.35, 4.75 and 8.15. For each starting point there are two
types of transmissibility curves: a ramp and a sinusoid. The B0 = 1.35 and B0 = 4.75 starting
points have ramps with a positive slope of 1, while the B0 = 8.15 curves have a slope of -1. All
ramps run from t=0 to t=4, where they level off. The sinusoids have amplitudes between 0.5 and 3
and a period of 1.

Hyperparameters for BSS-ANOVA were: a = a⌧ = 4 for both states, b⌧,R = 8.95 and b⌧,I = 72.1,
while bI = 1.25 and bR = 20. 2000 draws were taken and the first 1000 discarded. The tolerance
was 6. Hyperparameters for the LSTM and GRU were the same as for the Cascaded Tanks.

A partial display of the results are shown in Figures 3 for BSS-ANOVA and 4 for the GRU, which
was the better performing of the two neural nets on this dataset. For the GP, the total test set MAE
was 5.2739±4.0138 for I and 11.8345±21.7337 for R, corresponding to MAPEs of 8.99±4.92 for I
and 2.80±2.52 for R. Statistics were not calculated for the GRU as it failed to replicate the dynamics
in most test cases and was obviously inferior in a quantitative sense in every instance, as shown in
Figure 4.

3.4 Training and inference times

Training and inference times for BSS-ANOVA were fast, with a mean total train time of 6.3 seconds
for the cascaded tanks and 10.8 seconds for the SIR, with 8,000 and 20,000 training data points,
respectively, on a 2019 6-core i7 processor with 16 GB of RAM. The routines were implemented in
MATLAB, but not parallelized or optimized for speed. Models for ḣ1 contain between 23 and 41
terms, while ḣ2 has between 38 and 57 terms. Prediction times for 2000 static points for the cascaded
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Figure 3: BSS-ANOVA results for 3 curves in the test set: (a)-(b) sine wave transmissibility with
low initial infections; (c)-(d) sine wave transmissibility with moderate initial infections; (e)-(f) ramp
transmissibility. Shaded regions are 95% confidence bounds for the predictions as estimated from a
draw of 40 curves.
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Figure 4: GRU results for 3 curves in the test set: (a)-(b) sine wave transmissibility with low
initial infections; (c)-(d) sine wave transmissibility with moderate initial infections; (e)-(f) ramp
transmissibility

tanks averages 0.5437 s, and the time for evaluating integrals over the test set averages 20.22 s. For
the SIR model the İ model had 81 terms and the Ṙ model 9 terms, with a mean integration time of 5.3
s. Analyses have shown that the rate limiting step in BSS-ANOVA build algorithms are the O(NP )
construction of the X matrix from the inputs and basis functions. The neural networks were native
MATLAB functions, parallelized and optimized for speed. Nonetheless train times were considerably
longer, with mean train times of 130s for the ResNet and 175 and 123 s, respectively, for training the
LSTM and GRU for the cascaded tanks. This is to be expected given that the number of weights in
the neural nets are on the order of 104.
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Figure 4: GRU results for 3 curves in the test set: (a)-(b) sine wave transmissibility with low
initial infections; (c)-(d) sine wave transmissibility with moderate initial infections; (e)-(f) ramp
transmissibility

tanks averages 0.5437 s, and the time for evaluating integrals over the test set averages 20.22 s. For
the SIR model the İ model had 81 terms and the Ṙ model 9 terms, with a mean integration time of 5.3
s. Analyses have shown that the rate limiting step in BSS-ANOVA build algorithms are the O(NP )
construction of the X matrix from the inputs and basis functions. The neural networks were native
MATLAB functions, parallelized and optimized for speed. Nonetheless train times were considerably
longer, with mean train times of 130s for the ResNet and 175 and 123 s, respectively, for training the
LSTM and GRU for the cascaded tanks. This is to be expected given that the number of weights in
the neural nets are on the order of 104.
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�(⇣) ⇠ N [0,�(⇣)] =
X

i

�i i(⇣) (1)

ḣ1 = �1(h1, h2, u1) (2)

ḣ2 = �2(h1, h2, u2) (3)

1

K. Hayes, et al., arXiv, 2022 github.com/ESMS-Group-Public/FoKL-GPy
pip install FoKL

Table 1: Cascaded tanks 5-fold cross validated accuracies: derivatives

Method ḣ1 (MAE/10�4) ḣ2 (MAE/10�4)

OAK 17±4.7 36±2.4
BSS-ANOVA 18±6.5 39±3.6
ResNet 36±14 61±15
RF 30±9.4 49±4.9

Table 2: Cascaded tanks 5-fold cross validated accuracies: timeseries
Method h1 (MAE/MAPE) h2 (MAE/MAPE)

BSS-ANOVA 0.1167±0.0382 / 4.67±1.58 0.1577±0.0334 / 5.99±1.75
LSTM 0.2345±0.1006 / 9.46±4.87 0.2296±0.0378 / 9.58±3.32
GRU 0.3243±0.1092 / 12.16±5.02 0.2481±0.0402 / 9.89±3.40

serves as the forcing function for the system, with the tank water level heights the two states of the
system.

We first compared the performance of BSS-ANOVA with RF, ResNet and OAK static regressors.
Derivatives were calculated via direct finite differences for the relatively noise-free dataset, yielding
10000 instances. Each method was trained on concurrent values of both states and the forcing function
for each derivative. For the GP we used hyperparameters of a = 1000, b = 1.001, a⌧ = 4 and
b⌧ = 55 for ḣ1 and 69.1 for ḣ2, with tolerances of 3 for ḣ1 and 5 for ḣ2, and the AIC as discriminator.
Of 2000 draws the first 1000 were discarded. Only two-way interactions were required. For the RF
100 trees were used with a leaf size of 5. The ResNet had a depth of 6 (filter sizes ranging from 16
to 64) and in between each fully connected layer is a batch normalization and relu layer. The mini
batch size is 16, initial learn rate is 0.001, the data was shuffled every epoch for a total of 30 epochs,
and the validation frequency was 1000. OAK was applied at a maximum dimension of 3 and with
the default value of 200 inducing points. The 5-fold cross-validated results appear in Table 1. OAK
performed best for both outputs, followed closely by BSS-ANOVA. Both GPs outperformed the RF
and the ResNet by clear margins.

Timeseries predictions follow for the GP via a 4th-order Runge-Kutta integration routine. These were
compared with LSTM and GRU recurrent neural networks (RNNs). For the LSTM there was one
LSTM layer and a total of 128 hidden layers, the data was shuffled every epoch for a maximum of
125 epochs, verbose was equal to 0, and the sequence was padded to the left. The GRU had one
GRU layer and 150 total hidden layers, the data was shuffled every epoch for a total of 150 epochs,
verbose was equal to zero and the sequence was padded to the left. The 5-fold cross-validated results
(datapoints were not randomized before creating the folds so as to preserve the timeseries order)
appear in Table 2. BSS-ANOVA is most accurate, followed by the LSTM and the GRU. Figure 2
shows the predictions of the GP and the LSTM for the upper tank for one of the test folds. The GP
predictions are superior near the sharp inflection and critical points where nonlinearities are strongest.
Note that the first 50 points of each test set, which were provided to the LSTM and GRU as a start-up
set in the prediction phase, were removed from the calculation of error for both methods.

While it is reasonable to expect that OAK with 200 inducing points would outperform BSS-ANOVA
in the time integration, it was not practical to make this comparison for reasons of computing time. A
comparison with a reduced number of inducing points and increased time step in the integrator was
made – results are discussed in section 3.4.

3.3 Synthetic benchmark: Susceptible, infected, recovered model

The susceptible, infected, recovered model (SIR model) is a common simulation for infectious disease.
Though there are several versions, the simplest is three states, only two of which are independent.

7
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first principles 
priors reduce 
model uncertainty 
and ambiguity

weak prior

first principles prior
DS Mebane et al., PCCP, 2013 

Bayesian model 
calibration uses 
prior knowledge on 
parameters when 
making estimates
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normal proposal distribution.45 A random vector was drawn
from the multivariate normal distribution with a mean vector
θ̄ = [θ̄1,...,θ̄23] fixed at the current point in the random walk,
and covariance matrix V is the empirical covariance of a sub-
set of the previously accepted values in the MCMC chain:

(34)

The covariance matrix was initialized and recalculated ev-
ery 1000 MCMC steps based on the last 2000 samples. It then
was used as the covariance matrix for the next 1000 pro-
posals. An adjustable multiplier on the covariance guides a
reasonable acceptance rate of the proposal. After burn-in, the
covariance matrix is fixed at the final proposal covariance.

For δ, all the β coefficients for each main effect and sec-
ond order interaction coefficients (e.g. eqn (21)) were updated
simultaneously using an adaptive multivariate normal pro-
posal as described above. After a sufficient number of MCMC
iterations, the samples of θ and β (and other parameters) will
converge to its stationary distribution; this is the posterior
distribution of the model parameters, model discrepancy pa-
rameters, and observation error parameters.

3.4.2 Prior distribution. To complete the model specifica-
tion, prior distributions are required for θ, δ, and σ2. Priors
for some of the model parameters θ are derived from ab initio
quantum chemistry calculations or from scientific literature
and are specified using a normal distribution. The details of
the quantum chemistry methods used to obtain these prior
can be found in ref. 16. The model for δ in (22) requires a
prior specification for τj's from (23). A diffuse inverse gamma
prior is chosen for the τj's to promote better mixing of β and
an inverse gamma prior is chosen as well for σ2. The selected
priors for the τj's and σ2 are conjugate to the normal distribu-
tion of β's and the likelihood respectively, which ensure
Gibbs sampling for for the τj's and σ2 during the MCMC
procedure.

4 Process model
This small-scale reaction–diffusion model can be applied to
larger-scale models to make predictions about carbon capture
system performance with uncertainty quantification. Once a
joint posterior distribution was obtained by MCMC sampling,
samples were drawn from the posterior and incorporated in a
large-scale model. The large-scale model is based on a 1-D,
three region of a bubbling fluidized bed (BFB) adsorber
model and utilizes particle-scale kinetics (without the diffu-
sion model).46 It can predict the hydrodynamics of the bed
and remain computationally efficient and flexible such that it
can be adapted to many adsorption and desorption systems.
Fig. 2 depicts a schematic of the model.

In this study, we assume the particles are of Geldart group
A. Since the process model utilized in this study uses a more
complex reaction–diffusion particle model which introduces
a second spatial dimension, as described in sections 2–3
above, the original BFB model has been simplified relative to
the model described in ref. 46. The gas velocity is well above
the minimum fluidization velocity and within the “bubbling
fluidization regime”; however, it is assumed that no bubbles
are formed. The model utilizes instead a single “emulsion”
region/phase where gas is direct contact with the solid parti-
cle. The particle length scale is radially discretized (spherical
domain) into 30 control volumes. The device length scale is
axially discretized (cylindrical domain) into 25 control vol-
umes. Both solid sorbents and flue gas consisting of CO2,
H2O, and N2 are injected at the bottom of the bed and flow
upward through the absorber as the particles are transported
axially through the bed, removing CO2 from the gas.

The model is implemented in Aspen Custom Modeler
(ACM) (Aspen Technologies, Inc.). The particle length scale
was solved using ACM's partial differential equation (PDE)
solver utilizing a 2nd-order central finite difference method.
At the process-scale, a compartment-based approach, where
axial differential terms were expressed as finite differences
involving a first-order forward finite difference method, was
used. The physical properties of the gas phase were calcu-
lated with the cubic equation of state. The physical properties
of the solids were based on experimental measurements. The
process model involves 332 890 equations and a significantly
larger number of non-zeroes, as reported by ACM. Computa-
tions have been conducted on a Windows-based Workstation
utilizing an 8-core Intel i7 Processor.

The discrepancy terms were evaluated using external pro-
cedure calls in ACM. These procedures were coded in C++
and compiled into a dynamic link library for fast evaluation
of discrepancy terms and their residuals within the process
models. The dynamic discrepancy evaluation framework was
automated, with error handling capability, to read each pos-
terior point from an excel spreadsheet and report the corre-
sponding Lagrangian profiles for the solid particles. Due to

Fig. 2 Schematic of the bubbling fluidized bed model.46
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(●) Li ; (●) La ; (●) O; (●) Ti 

Li0.3La0.5667TiO3

Ring, 
et. al., 
JECS 
2023

LLTO as high-rate anode material
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Ring, et. al., JECS 2023

With further reduction, more Ti3+ ions are present, and the DC
resistance shrinks by several orders of magnitude, visible in Fig. 4b.

We calculated the electronic conductivity σe from the low-
frequency impedance and sample dimensions, which is plotted as
a function of δ in Fig. 5. The relationship between electron
conductivity and concentration is linear for δ < 3 × 10−3. The
strong non-linearity at higher δ is a result of defect interactions that
reduce the polaron mobility, meaning that an idealized non-
interacting point defect model becomes inaccurate. Moreover, the
electronic conductivity has a nonzero intercept at a δ-value of
approximately 7 × 10−4, meaning that there is an offset between
Ti3+ concentration and Li+ excess δ. This offset is caused by
electrons which are “trapped” in localized states within the band gap,
so-called trap states. These may be caused by various kinds of
defects (e.g. oxygen vacancies, grain-boundary states or transition

metal impurities. As long as the Fermi level is in the range of these
trap states, only very few electrons are mobile (TiTi′ ) states. Only
when all trap states are filled, additional electrons are injected into
the conduction band (Ti3+ states), giving rise to substantial
electronic conductivity. Accordingly, the Li-overstoichiometry δ and
Ti3+ concentration TiTi[ ′ ] are shifted relative to each other, given by
Ti 7 10Ti

4δ[ ′ ] = − ⋅ − p.f.u. This shift is visible in the two slightly
“misaligned” x-axes in Fig. 5, From the slope of the linear fit (red
curve in Fig. 5, we can calculate the mobility of the Ti3+ polarons
according to
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This results in an electron mobility of about 0.11 cm2 Vs−1 This
value is significantly lower than the electron mobility of donor-
doped perovskites such as Nb-doped SrTiO3 (6 cm2 Vs−1).19 We
attribute this difference to the much higher local disorder in LLTO,
due to the mixed A-site ions, which likely increases the concentra-
tion of electron scattering centers and promotes polaronic self-
confinement of the electronic carriers.

Nonetheless, the electron mobility is high compared to the ion
mobility, and the cricitical Ti3+ concentration a the electrolytic
domain boundary can be calculated as 1.7 × 10−8 p.f.u. according to
Eq. 7 This means that the corresponding potential vs Li metal at the
electrolytic domain boundary is substantially above the character-
istic lithiation plateau. This prevents usage of LLTO as an electro-
lyte for anode materials with reasonably low potentials, i.e. not only
for silicon or graphite anodes but also for Li4Ti5O12.

Thermodynamics of Li insertion into LLTO.—For a more
complete picture of the Li insertion, we compare these data with
literature values5 until all vacant A-sites are filled (i.e. δ = 0.14).
The corresponding data are shown in Fig. 6. At higher Li excess
concentrations, the U(δ) curve shifts from a logarithmic to an almost
linear regime. The simple point defect chemical model (Eq. 4), black
dotted line in Fig. 6, only poorly describes the measured equilibrium
voltage. This is not too surprising, since concentration changes are
substantial and therefore, defect interactions become relevant at high
concentrations. Consequently, activities rather than concentrations
should be used. A rather linear slope between δ = 0.015 and δ =
0.14 (all A-site vacancies are filled) can be clearly observed, as
predicted by the model. Further lithiation was not performed in this
experiment, but literature studies suggest that at lower potentials, Li
ions enter interstitial perovskite 3c sites, which results in a capacity
of up to 240 mAh g−7. Different effects are responsible for the non-
ideal defect thermodynamics. For example, structural refinements by
XRD1 and NMR20 as well as TEM measurements21 revealed that the
A-site cations do not have a perfect random ordering, but rather form
alternating Li-rich and La-rich layers along the doubled c-axis of the
tetragonal perovskite structure. Consequently, the energy levels of
A-sites are not exactly identical but may vary, depending on the
configuration of the surrounding nearest neighbors. Many different
neighboring Li, La and vacancy configurations are thus possible, and
each has different energy levels for a Li ion. Therefore, the chemical
potential of Li ions depends not only on the configurational entropy,
but also on the energy levels of different A-sites in the disordered
LLTO structure. Moreover, also repulsive interaction between Ti3+

polarons can influence the electron chemical potential. This knowl-
edge can be used to improve the simple point defect model
introduced above. In the simple model the Li ion chemical potential
including site restriction can be expressed by

⎜ ⎟⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠RTln
Li
V

RTln
0.29
0.14

. 11Li Li
A

A
Li

0 0μ μ μ δ
δ= + [ ]

[ ] = + +
− [ ]+ + +

When we introduce the simple assumption that also the individual
Gibbs free energy of Li ions (i.e. without configurational term)

Figure 5. Electronic conductivity of the LLTO as a function of stoichio-
metry. The red line shows the fitting result of the linear region. The dashed
vertical line highlights that the c(Ti3+) and δ x-axes have slightly differing
origins.

Figure 6. Experimental equilibrium voltage of LLTO vs Li metal as
function of δ from this study (red squares) and Birke et al.5 (blue circles).
The solid black line indicates the modified model according to Eq. 13
whereas the dotted line corresponds to Eq. 4.
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x = 0 (1)

x = L (2)

known flux from t = 0 until t = tpulse

during relaxation the contact directly monitors c(x = L, t)

V = �RT

F
ln (�Li�e)�

RT

F
ln
h (0.29 + ⇣Li)⇣Li
(0.14� ⇣Li)(1� ⇣Li)

i
(3)

Li + v00A + TixB ↵ Li0A + Ti0B (4)
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LLTO as high-rate anode material

• excellent rate capability
• >3000 cycle stability
• 1-1.7 V vs. Li/Li+
• 225 mAh/g capacity
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Ni-doping: 352 
mAh/g and 10000 
cycles?

There’s probably 
space for 
optimization
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First principles modeling of cell potential

Monte Carlo simulations give µLi vs. cLi
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Galvanostatic 
Intermittent 
Titration Technique 
(GITT) is designed to 
isolate electrode 
transport
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and inductance values [10]. By modeling the equiva-

lent circuit and fitting the Nyquist plot, the following

specific resistance values can be quantified from the

high-frequency region to the middle-frequency

region: the bulk resistance of the whole cell compo-

nents, interfacial layer resistance on the electrode,

and charge transfer resistance related to the kinetics

of the electrochemical reaction at the electrode.

Moreover, the diffusion coefficient of lithium ions

can be calculated in the low frequency region using

the Warburg impedance.

Additionally, the galvanostatic intermittent titration

technique (GITT) has become a widely applied elec-

troanalytical method for the kinetic analyses of LIBs

[11-18]. The GITT measures the transient voltage

change and open-circuit voltage (OCV) change

during the charging and discharging processes using

only a constant current supply and specified cut-off

intervals [18]. This procedure retrieves both thermo-

dynamic and kinetic parameters and was first devel-

oped to examine the lithium-ion diffusion coefficient

in host materials in battery electrodes. The GITT can

calculate diffusivity values at various states of charge

(SOCs) simply by voltage change, unlike the CV,

Fig. 1. (a) Schematic illustration of the experimental cell arrangement and components. A; mobile species, B; host material,

y; arbitrary stoichiometric number, δ; deviation from the stoichiometric composition. The electrolyte-electrode interface is at x = 0

and the area is S. The electrode thickness is L. (b-d) Schematic diagram of a single galvanostatic titration step of GITT experiment.

(b) A constant current pulse (I ) is imposed for the duration time (τ) at time t , and (c) the resulting voltage changes. (d) Description

of the mobile ion movement during the galvanostatic titration step as indicated in (b) and (c).
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where mB is the mass of the host material in the elec-

trode [g], and MB is the molecular weight of the host

material [g mol
−1

]. Using the simple algebraic form

of Equations (13), (14), and (15), the diffusion coeffi-

cient can be calculated at each step using the follow-

ing Equation (16):

(16)

In summary, the chemical diffusion coefficient of

lithium can be easily calculated based on GITT using

Equation (16). VM and MB are the material proper-

ties; τ, mB, and S are the values of the experimental

condition; and ∆Es and ∆Et are calculated from the

GITT experimental results. The main assumptions

for the diffusion coefficient equation were that the

electrode material should be homogeneous, the molar

volume change of the host material is not large

enough, the current should be a low value with a

short duration time, and the cell voltage should be

linear for (duration time)
1/2

.

Fig. 3 shows an example of the GITT experiment

of the LiNi
0.5

Co
0.2

Mn
0.3

O
2
 material, which shows the

changes in current and voltage over time and the cal-

culated diffusion coefficient. Each step comprised a

10 min current pulse at a current rate of C/20, fol-

lowed by 1 h of the relaxation period with no current.

During the charging process, a positive current pulse

increased the cell voltage proportional to the IR drop,

and the voltage slowly increased owing to the dein-

tercalation reaction. After cutting off the current sup-

ply, the voltage decreased owing to the IR drop and

continued to decrease, reaching the equilibrium state

by Li
+

 diffusion. During the discharging process with

a negative current pulse, the voltage changed in the

opposite direction (Fig. 3(a)). The diffusion coeffi-

cient can be calculated for various SOCs in the mate-

rial by repeated galvanostatic titration steps during

charging and discharging processes (Fig. 3(b)).

2.2 Experimental condition and practical limita-

tions of GITT

In measuring the diffusion coefficient using GITT,

it is critical to set a reasonable experimental condi-

tion. Based on the assumptions for the diffusion coef-

ficient equation, setting the small current injection for

a short time followed by sufficient relaxation time is

essential, as aforementioned. Some experimental

conditions used for GITT, such as current rate, dura-

tion time of the current, and relaxation time, are sum-

marized in Table 1 for comparison. Usually, the

GITT experiments were performed with a current

rate of about C/20 ~ C/10 for about 5 ~ 30 min in the

current injection step. The relaxation time setting was

varied, as the time to reach the equilibrium state after

the current injection is different for each. Therefore,

this condition should be properly established during

the GITT measurement to collect the electrochemi-
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Fig. 3. The example of the GITT experiment for the LiNi Co Mn O  material in a voltage range of 2.8-4.3 V (vs. Li/

Li ) at a current rate of C/20 for the second cycle. (a) Experimental result of the GITT curve vs. time. The current duration

time and relaxation period were 10 min and 1 h, respectively. The inset shows the imposed current and resulting voltage

response of a charge and discharge pulse in the GITT experiment. (b) Calculated diffusion coefficient based on Equation

(16) from (a).
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out the electrode before applying the current. Equa-

tions (5) and (6) are two boundary conditions at x = 0

and x = L, respectively. Equation (5) is transformed

from Equation (2), and Equation (6) is a condition in

which ions are impermeable at a finite boundary. The

solution of the differential Equation (3) under condi-

tions (4)-(6) is known [19] and can be expressed as

follows for x = 0:

(7)

where , and

erf (z) is the error function. Assuming that the

, Equation (7) can be approximated as fol-

lows:

(8)

Since the GITT experiment does not measure the

change in concentration with time but the change in

voltage with time, Equation (8) requires further trans-

formation. If the volume change according to the

composition can be neglected, the concentration can

be related to the change in the chemical composition,

and this expression can be denoted as follows:

(9)

where VM is the molar volume of the material (cm
3

mol
−1

), and NA is Avogadro’s number (6.022×10
23

mol
−1

). Inserting Equation (9) into Equation (8)

yields Equation (10). Subsequently, expanding by dE

yields Equation (11), and the diffusion coefficient can

be expressed as Equation (12) by arranging Equation

(11). This result implies that the diffusion coefficient

is determined by the three variables of cell voltage,

time, and stoichiometry deviation.

(10)

(11)

(12)

Here, F is Faraday’s constant (96485 C mol
−1

), and

 and  denote the steady-state voltage

change and transient voltage change during one galva-

nostatic titration step, respectively. If the steady-state

voltage change is small by using a sufficiently small

current for a short time, and the E vs.  in transient

voltage curve exhibits a straight-line behavior, then,

 and  can be approximated as follows: 

(13)

(14)

where  (steady-state voltage change)

and  (total voltage change during the

current pulse) (Fig. 2). Additionally, the stoichiome-

try change due to the current pulse in the titration step

of Li
+

 can be expressed as Equation (15).
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Fig. 2. Schematic diagram of the two linear correlation assumptions in one galvanostatic titration step. (a) Steady-state

voltage change is small by using a sufficiently small current for a short time. (b) Transient voltage change with time shows

a straight-line behavior in the E vs. (time)  curve.
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out the electrode before applying the current. Equa-

tions (5) and (6) are two boundary conditions at x = 0

and x = L, respectively. Equation (5) is transformed

from Equation (2), and Equation (6) is a condition in

which ions are impermeable at a finite boundary. The
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tions (4)-(6) is known [19] and can be expressed as

follows for x = 0:
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voltage with time, Equation (8) requires further trans-

formation. If the volume change according to the

composition can be neglected, the concentration can

be related to the change in the chemical composition,

and this expression can be denoted as follows:
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out the electrode before applying the current. Equa-

tions (5) and (6) are two boundary conditions at x = 0

and x = L, respectively. Equation (5) is transformed

from Equation (2), and Equation (6) is a condition in

which ions are impermeable at a finite boundary. The

solution of the differential Equation (3) under condi-

tions (4)-(6) is known [19] and can be expressed as

follows for x = 0:
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• D is constant for each step
• partial derivative of E wrt concentration is constant
• E(t) is parabolic during the current step
• diffusion is rate-limiting during the current step
• diffusion geometry is semi-infinite
• parasitic currents are minimal
• charging currents are minimal

GITT assumptions
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cal responses without any misunderstanding.

Though the GITT is a powerful electroanalytical

method for the kinetic analyses of LIBs, some practi-

cal limitations exist. First, this method takes a long

time to fully measure due to the short current injec-

tion time at a low current rate and a long relaxation

time. Depending on the experimental conditions, it

may take more than a month [36]. Second, the mate-

rials which undergo phase transitions and pulveriza-

tion are hard to apply, as they go against the

assumptions for the diffusivity equation [18,37-39].

Third, extracted diffusion coefficient information

from the GITT is not an absolute value. An electrode

used in LIB is a heterogeneous system that contains

active material, conductive agents, and binders.

There is a distribution of particle sizes, and different

diffusion regimes exist because of this porous com-

posite electrode configuration so that reliable quanti-

tative diffusion coefficients are difficult to extract

from GITT alone [39,40]. Nevertheless, GITT can

easily obtain a relative measure of diffusion. Addi-

tionally, thermodynamic information can be

extracted regardless of the materials, enabling us to

understand and trace the electrochemical reactions in

the system. Further detailed GITT applications will

be addressed in the next section.

3. GITT Application to LIBs

3.1 Diffusivity comparison of materials

Numerous studies have been conducted on the lith-

ium diffusion coefficient for various electrode mate-

rials in LIBs [12,24,41-43]. Because the diffusion

coefficient Equation (16) is derived from some

approximations as mentioned previously, some stud-

ies have used the newly derived diffusion equation

from Equation (12) or combined it with CV and EIS

analysis to minimize system error [25-27,37,43,44].

However, because the particle size of the material,

electrode configuration, loading level, etc., are all dif-

ferent for each study, this approach results in a few

orders of difference for the diffusion coefficient,

making it difficult to compare the absolute values.

Therefore, the GITT was applied to investigate the

differences or changing tendencies between the com-

parative groups using the same experimental condi-

tions [12,27-30]. For example, Liu et al. [27] utilized

the GITT to investigate the doping effects for high

voltage operation (4.5 V vs. Li/Li
+

) between pristine

LiCoO
2
 (P-LCO) and La- and Al-doped LiCoO

2
 (D-

LCO), as shown in Fig. 4(a). They showed that the

larger La ions in the structure effectively enlarged the

c-axis, increasing the diffusion pathway, and Al ions

prevented the order-disorder transition, which sub-

stantially lowered the Li
+

 diffusivity from a structural

point of view. The Li
+

 diffusivity values determined

via GITT for D-LCO were twice those for P-LCO at

the initial charging stage and ten times greater at the

final discharging stage (Fig. 4(b)), resulting in a sig-

nificantly enhanced rate capability. Wang et al. [12]

showed a highly improved fast-charging performance

in spinel lithium manganese oxide (LiMn
2
O

4
, LMO)

by introducing a considerable number of twin bound-

ary defects in the lattice via a defect engineering

approach (Fig. 4(c, d)). They demonstrated that fast

charging was enabled owing to the highly improved

diffusion coefficient using the GITT (Fig. 4(e)), as

well as CV analysis using the Randles-Sevcik equa-

tion mentioned above. 

The changing tendency of diffusivity in various

Table 1. Comparison of experimental conditions for GITT

experiment

Current rate 

(or current density)

Duration time 

of the current

Relaxation 

time
Ref

C/10 5 min 2 h [13]

C/20 90 min 5 h [16]

20 mA g 30 min 4 h [20]

C/10 10 min 40 min [21]

C/10 20 min 2 h [22]

C/20 60 min 4 h [23]

C/5 10 min 40 min [24]

C/20 15 min 45 min [25]

0.31 µA cm 30 min 10 h [26]

C/10 10 min 2 h [27]

C/10 20 min 1 h [28]

C/10 5 min 1 h [29]

C/10 30 min 2 h [30]

C/20 20 min 2 h [31]

0.4 C 5 min 3 h [32]

C/25 90 min 10 h [33]

20 mA g 30 min 10 h [34]

C/20 120 min 10 h [35]
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and inductance values [10]. By modeling the equiva-

lent circuit and fitting the Nyquist plot, the following

specific resistance values can be quantified from the

high-frequency region to the middle-frequency

region: the bulk resistance of the whole cell compo-

nents, interfacial layer resistance on the electrode,

and charge transfer resistance related to the kinetics

of the electrochemical reaction at the electrode.

Moreover, the diffusion coefficient of lithium ions

can be calculated in the low frequency region using

the Warburg impedance.

Additionally, the galvanostatic intermittent titration

technique (GITT) has become a widely applied elec-

troanalytical method for the kinetic analyses of LIBs

[11-18]. The GITT measures the transient voltage

change and open-circuit voltage (OCV) change

during the charging and discharging processes using

only a constant current supply and specified cut-off

intervals [18]. This procedure retrieves both thermo-

dynamic and kinetic parameters and was first devel-

oped to examine the lithium-ion diffusion coefficient

in host materials in battery electrodes. The GITT can

calculate diffusivity values at various states of charge

(SOCs) simply by voltage change, unlike the CV,

Fig. 1. (a) Schematic illustration of the experimental cell arrangement and components. A; mobile species, B; host material,

y; arbitrary stoichiometric number, δ; deviation from the stoichiometric composition. The electrolyte-electrode interface is at x = 0

and the area is S. The electrode thickness is L. (b-d) Schematic diagram of a single galvanostatic titration step of GITT experiment.

(b) A constant current pulse (I ) is imposed for the duration time (τ) at time t , and (c) the resulting voltage changes. (d) Description

of the mobile ion movement during the galvanostatic titration step as indicated in (b) and (c).
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the material when z> 0), S is the electrochemically active surface
area, F is the Faraday constant, xA is the number of species A in the
chemical formula, vM is the molar volume (in the solid) of the
chemical formula containing species A, and D̃ is the chemical
diffusion coefficient. This solution is for a planar one-dimensional
(1D) semi-infinite system, making it valid only for Dt L 12˜ ≪ in
finite systems with a size of L; the solution is not guaranteed to be a
good approximation for cylindrical or spherical systems. Equation 1
also requires that all species are added (or removed) at the surface of
the active material. If the electronic and ionic contacts are not at the
same surface, additional considerations could be required depending
on the transference number (see Appendix A.1.1). The active
material must also be a single phase; the behavior of a multi-phase
material will, in general, not follow24 the simple surface-composi-
tion propagation assumed in Eq. 1.

The voltage evolution of the working electrode (with respect to a
reference electrode for species A) follows from Eq. 1:

V t V IR
Iv

zFS

V t
D

2
x

. 2A

A
0 tot

M
eq

π( ) − = + − ∂
∂ ˜ [ ]

Here, VA
eq is the equilibrium cell voltage (from Nernst potential) at a

given composition of species A, measured with respect to a
reference. V0 is the initial cell voltage before the current pulse,
ideally equal to VA

eq. Rtot is the resistance of the cell including all
possible sources. Figure 2a shows an example voltage curve for a
current pulse applied for a time interval τ. In the original method, a
linear fit in V vs t is used to extract D̃ (Fig. 2b). The ∂Veq/∂x factor
is estimated by measuring the change in open-circuit voltage after
full relaxation (the current pulse is usually designed to induce a
measurable change in overall composition for this estimation).
Chemical diffusivity D̃ is extracted from the slope of V(t) vs t
under the assumption that Rtot remains constant during the current
pulse. This assumption requires that all changes in the resistances

including those from charge-transfer or electrical contacts should
remain minimal relative to the change in the surface chemical
potential of species A. In the following sections, we highlight several
significant error sources in the conventional implementation of the
GITT method.

Systematic Errors from Composition-Dependent Overpotentials

One essential requirement in using Eq. 2 to extract D̃ is that any
change in Rtot (from various sources of overpotentials) during the
current pulse is negligible. Whether the changes in overpotentials
matter or not is determined by the ratio between the change in IRtot
and the change in Nernstian voltage corresponding to the surface
composition of A:

I R
V

error
signal

, 3
A

tot
eq

δ
δ= [ ]

where δ indicates the change during an infinitesimal period of a
current pulse. The time interval of the current pulse is not relevant
for assessing this assumption, because both quantities change
simultaneously during the pulse. By contrast, the magnitude of the
current is important as it directly scales with this ratio, but the
current level is seldom chosen based on this consideration because of
the widespread perception that δRtot is minimal.

However, Rtot includes components such as charge-transfer
resistance or electronic resistances, both of which are highly
sensitive to the active material composition. To illustrate the
influence of these factors through an example, Fig. 2a shows a
typical GITT curve that one could encounter in an experiment.
During a current pulse of τ= 1 in this example, the working
electrode voltage changes with time from two origins: the voltage
increases from the change in the surface μA in accordance to Eq. 1 as
shown as a dashed line; also, an IR drop component that moderately
diminishes over time, from a Rtot, here chosen to decrease by 17%

Figure 1. Inconsistent GITT diffusivity values reported in the literature. All data points are from the same material system, LixNi1/3Mn1/3Co1/3O2. In addition to
the orders-of-magnitude inconsistency in the values, the qualitative dependency on Li composition is also discrepant among reports. The sky blue markers
labeled lithiation/delithiation indicate measurements from nominally identical samples but with reversed current directions. Data are from Refs. 10–19.
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accessible means to measuring the chemical diffusion coefficient of electrochemical electrode materials. The method continues to
be widely used today, but the reported diffusivity values are highly inconsistent, ranging as much as four orders of magnitude for
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The galvanostatic intermittent titration technique (GITT) is one
of the most widely used methods for measuring chemical diffusivity
in electrochemically active battery materials. Since the first im-
plementation by Weppner and Huggins,1–3 thousands of studies have
employed the method, and a majority of the diffusivity values for
battery materials are quoted from GITT measurements.

In a GITT experiment, a short pulse of constant current is applied
to electrochemically induce a composition change on the surface of
an active material in the working electrode. After the pulse, the cell
is rested under an open-circuit condition to approach equilibrium. In
the original recipe,1–3 the cell voltage evolution during a current
pulse is used to extract a square-root time dependency expected from
diffusion, and the relaxation period is used to estimate equilibrium
thermodynamic properties. Other variant methods instead extract
diffusivity from relaxation curves.4,5

The sample form in the earliest GITT experiments was dense and
large bulk pieces (e.g. pellets or disks).1,2 Nowadays, multi-particle
porous electrodes became the standard form for battery devices, and
the majority of GITT studies apply the technique to porous
electrodes. This extension to multi-particle porous systems requires
a condition that all active particle surfaces remain at similar
compositions during an electrochemical reaction or relaxation.
This condition is equivalent as requiring each particle reaction to
be limited by solid-diffusion (relative to surface reaction kinetics);6

however, this condition is rarely validated or considered.
The most disappointing aspect of the GITT method is that it has

produced highly inconsistent results in the literature. To illustrate
this point, numerous measurement results on the same material
system, LiNi1/3Mn1/3Co1/3O2 (NMC111), are compiled in Fig. 1.
Immediately noticeable is the spread of values across four orders of
magnitude. In terms of transport, this uncertainty translates to a
difference between 1 and 100 μm-sized particles, an unimaginable
resolution limit for modern microscopy. Also noticeable is the
contradicting Li composition dependencies reported in different
studies. The sky blue markers in Fig. 1 show that opposite Li
composition dependencies are reported even in the same study,
depending on the current direction. Because of this inconsistency,
the GITT method as implemented today is not capable of studying
structure-diffusion relationships. Density functional theory investi-
gations have predicted a competing interplay between inter-layer

distance and transition metal repulsion,7–9 but experimental inquiry
lags behind in most materials.

Errors in GITT have been attributed to uncertainty in sample
geometries, Li-composition dependent diffusivity, or non-Fickian diffu-
sion, but these sources only partially account for the literature incon-
sistencies. For instance, uncertainty in the active material surface
area13,20 should only make the scale of diffusivity uncertain, not the
dependency on Li composition (whether an increase in sample area from
cracking21 compromises the composition-dependency investigation
could be checked by comparing subsequent cycles). Non-constant
diffusivity or non-Fickian behavior could require corrections in the
estimated values, but calculations show that such corrections are minor22

relative to the orders-of-magnitude inconsistencies in reported values.
The inability to explain the inconsistent literature reports suggests that
the primary sources of error are yet to be identified.

Here, we systematically analyze numerous, previously over-
looked, yet significant error sources. Particularly notable causes
include composition-dependent reaction kinetics, non-diffusion-lim-
ited samples, errors in relaxation fitting methods, and misinterpreta-
tion of early transient effects. We propose a modified fitting method
for the relaxation analysis that uses t trelax relaxτ+ − as the time
variable (trelax is relaxation time; τ is the current pulse duration).
This method mitigates systematic errors present in existing analysis
schemes. We also emphasize the importance of a diffusion-limited
sample. These considerations reveal the ideal setting for evaluating
chemical diffusivity with the GITT method. An experimental
demonstration will follow in Part 2.23

Review of the Original Method

Some basic assumptions underlying the original GITT method1–3

become apparent from deriving the time evolution of the working
electrode voltage under a galvanostatic pulse. Suppose that one adds (or
removes) a neutral species A to (or from) an active material in the
working electrode through a constant-current electrochemical reaction. If
chemical diffusion occurs through two mobile charge species Az+ and
e−, the time evolution in the chemical potential of the neutral species A
at the active material surface is (derived in Appendix A.1.1):

t t
Iv

zFS
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Mμ μ π
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Here, the current pulse starts at time t= 0, I is the Faradaic current
defined as positive for oxidation (i.e. negative for species A enteringzE-mail: Stephen.D.Kang@gmail.com
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GITT via numerical & statistical analysis
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larger concentration steps 
possible (no need to 
equilibrate)

more accurate estimates of 
D as function of 
concentration

proof-of-concept coming 
soon
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depends linearly on the site occupancy, we can introduce an
additional empirical coefficient α in Eq. 12, expressed by

⎛⎝ ⎞⎠RTln
0.29
0.14

. 12Li Li
0μ μ α δ δ

δ= + ⋅ + +
− [ ]+ +

Therein, the empirical coefficient α represents the strength of the
defect interaction. Implementing this in the equation for U(δ) (cf
Eq. 4) we get

⎜ ⎟⎛⎝ ⎞⎠U
G

F
RT
F

ln
0.29

0.14 1
. 13LLTO

R red
0 α δ δ δ

δ δ= − Δ − * − ( + )
( − )( − ) [ ]

With this additional parameter, we can almost perfectly repro-
duce the experimental U(δ) curve, see Fig. 6, solid black line
(improved model). From a of our own experimental data (red
squares in Fig. 6) to Eq. 13 we obtain GR red

0Δ = −153.4 kJ mol−1,
and α = −145 kJ mol−1. Fitting the data by Birke et al.5 gives
almost the same values (−151.4 kJ mol−1 and α = −145 kJ mol−1,
respectively).

Determination of the electrolytic domain boundary.—So far we
have an analytical thermodynamic model which describes Li
insertion into LLTO. Moreover we have data of the electronic
conductivity in the δ-range where the electronic conductivity
strongly exceeds the ionic one. However, we still have to discuss
the electrolytic domain boundary Udb which we defined by an
electronic transference number of 0.01. For the simplified defect
model we already deduced an equation for Udb and TiTi db[ ′ ] (Eqs. 8
and 7). Since we face very low δ values at this boundary we can also
neglect defect interactions and can stay with the simplified defect
model instead of switching to Eq. 13. From our experimentally
determined values of electron mobility (ue = 0.11 cm2 Vs−1) and

GR red
0Δ = −153.4 kJ mol−1 we find TiTi db[ ′ ] = 1.7 × 10−8 and Udb =

2.05 V. Due to electronic trap states, the Li-overstoichiometry at the
domain boundary is substantially larger and (almost) equals the trap
state density of δdb = 7 × 10−4. Trap states, however, have no
influence on the energy level of the Ti3+ polarons, nor do they
contribute to the electron conduction and are therefore irrelevant for
the electrolytic domain boundary.

Importantly, the electrolytic domain boundary is often given by
tion = 0.99, but other values are and the critical electron conductivity
depends on the planned application. For this, we can calculate the

electron conductivity as function of the voltage vs Li metal in the
range of small TiTi[ ′ ] (where defect interactions are negligible) by
combining Eqs. 5 and 6:

⎜ ⎟⎛⎝ ⎞⎠u
V

U F G
RT

0.14
0.29

F
exp . 14e e

M

LLTO R red
0

σ = ⋅ ⋅ ⋅ − + Δ [ ]

Since all parameters in this equation are known, we show the
calculated and measured electron conductivity as function of the
voltage vs Li metal in Fig. 7, together with the Li ion transference
number (assuming σLi = 5 × 10–4 Scm−1). Additionally, a “linear”
fit of the first few (marked in grey) σe data points (dotted line) agrees
well with the model described by Eq. 14, further proving the validity
of Eq. 14. Clearly visible, the analytical model is only reasonably
applicable for σe < 0.5 S cm−1, and U > 1.75 V. Above this value,
defect interactions alter the thermodynamics and mobility of
electronic defects.

Figure 7. Electronic conductivity and transference number as function of
the overpotential. Symbols represent the measured electronic conductivity
and transference numbers, solid and dotted lines were calculated according to
the defect chemical model (Eq. 14). Conductivity values correspond to the
left axis, and the transference number to the right axis. The exponential
slopes of transference number and conductivity are all equal with ±59 mV
dec−1.

Figure 8. (a): Examplary voltage vs time of a GITT step, showing the end of
a relaxation period, a galvanostatic reduction period and another relaxation
period. (b): Ambipolar diffusion coefficient of LLTO, calculated from the
measured partial ion/electron conductivities and defect-chemical model for
the U(Q) curve (solid and dashed lines). Additionally, experimental D values
from the GITT measurements are plotted as black squares (Birke et al.5) and
green diamonds (this work).
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where n is the density of formula units and u is a mobility. The continuity equation yields
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