SOUTH DAKOTA MINES[™]

CURIOUS SMART TENACIOUS

Scalable, High Energy Density Lithium-Sulfur Batteries (SD-LSB)

NASA Battery Workshop Nov 16, 2022, Huntsville, AL

Wahid Hasan^a, Khang Hyynh^b, Amir Razzaq^a, Gulam Smdani^a, Rajesh Shende^b, Tula Paudel^c, and <u>Weibing Xing</u>^{a*}

- ^a Dept of Mechanical Engineering
- ^b Dept of Chemical and Biomedical Engineering
- ^c Dept of Physics
- Email: weibing.xing@sdsmt.edu

South Dakota School of Mines and Technology

NASA's energy storage needs for future space missions

 NASA JPL Whitepaper "Energy Storage Technologies for Planetary Science and Astrobiology Missions". May 01, 2021*

Table 3: Performance Characteristics of Emerging Rechargeable Battery Technologies							
Technology	Projected Performance (75% of Cell level)				Challenges	Key Players	TRL
	Wh/kg	Wh/l	Cycle Life	Temp	chanciges	1009 1 1009 010	
Li-S with Liquid Ely'te	325	600	200	-20 to +50		Oxis Energy, Sion Power ,	3

325 Wh/kg (battery level) \rightarrow 433 Wh/kg (cell level)

* Bugga, R.; Brandon, E.; Darcy, E.; Ewell, R.; Faguay, P.; et al. "Energy Storage Technologies for Planetary Science and Astrobiology Missions". May 01, 2021.

Li-S battery advantages

- High theoretical specific capacity / energy S half redox reaction:
 - $S_8 + 16Li^+ + 16e^- \leftrightarrow 8Li_2S$ or
 - $S + 2Li^+ + 2e^- \leftrightarrow Li_2S$ (Li₂S = lithium sulfide)
 - S theoretical specific capacity 1,675 mAh/g
 - Li-S battery theoretical specific energy ~ 2,500 Wh/kg
- Naturally abundant
- Low cost
- Environmentally friendly

Li-S battery challenges

 S cathode and Li form a series of intermediates (Li₂S_n n>1) before the final product (Li₂S)

Li-S battery challenges

- Dissolution of high-order Li polysulfides (LPS), Li_2S_n (4 \le n \le 8)
 - Diffusion of LPS anions (S_n²⁻) through the separator to the negative Li anode can cause
- LPS shuttle phenomenon during charge
 - High order LPS diffuses to the negative electrode and reacts with Li anode to form low order LPS
 - Low order LPS diffuses back to the positive electrode to be oxidized to form high order LPS
- Poor electronic conductivity of S and low order LPS
 - \circ S is 5 x 10⁻³⁰ S/cm at 25°C; (compare Cu 6 x 10⁷ S/cm)
 - \odot Low order LPS (Li₂S₂, Li₂S) are insulating in nature
- Sulfur electrode volume change
 - \circ ~76% volume change during cycling \rightarrow loss of particle contact
- Use of metallic Li anode
 - \circ Dendrite formation \rightarrow safety concerns

M SOUTH DAKOTA MINES Nanolayer polymer modified carbon (NPC)

- NPC
- Renewable biomass corn stover starting material
- Final product: **NPC**.

Li-S battery preparation

- NPC modified sulfur electrodes: NPC-S.
- Baseline sulfur electrodes: Control
- Li anodes
- Electrolyte: LiTFSI in DOL/DME
- Polyolefin separators
- CR2032 coin-type cell hardware

Specific capacity of Li-S cells

- NPC-S cell delivered discharge specific capacity ~1,600 mAh/g which approaches the theoretical value of 1,672 mAh/g
- The control cell delivered only 800 mAh/g due to adverse effect of PS formation resulting in loss of active sulfur

Cycle life of Li-S cells

AKOTA

• The NPC-S based cell delivered twice the specific capacity than the baseline-S cell (940 mAh/g vs. 470 mAh/g) after 100 cycles

SOUTH DAKOTA MINES

In-situ Raman of Li-S cells

- The baseline-S showed characteristic PS peaks due to dissolution of PS species into the electrolyte
- The NPC-S showed no PS peaks (no PS dissolution into the electrolyte)

- The Carbon-S and Polymer-S cells delivered significantly lower discharge specific capacities, 580 mAh/g and 140 mAh/g, respectively, than 1,600 mAh/g of the NPC-S cell.
- No or inadequate PS trapping capability and large charge transfer interfacial impedance led to the low discharge specific capacities of the Carbon-S and Polymer-S cells

SOUTH DAKOTA MINES

Molecular dynamics simulation

- Interfacial charge distribution: red: electron gain green: electron loss
- Accumulation of opposite charges on NPC leads to the formation of surface dipoles.
- MD simulation suggests NPC's PS trapping capability arises from dipole-dipole interactions

Conclusions

- A new type of PS-trapping material, NPC, was studied
- NPC-S based Li-S cells demonstrated near theoretical discharge specific capacities
- Our novel approach is simple, low-cost, and economically scalable for large-scale commercialization
- SD-LSB holds promise to address NASA battery energy storage needs for future space missions

SOUTH DAKOTA MINES

Acknowledgement

This work was supported, in part, by the Larry and Linda Pearson Endowed Chair at the Department of Mechanical Engineering, the South Dakoda School of Mines and Technology