## High Energy Density and Specific Energy Silicon Anode-Base Batteries for Aerospace

## **Applications**

Ionel Stefan CTO, Amprius Technologies 225 Humboldt Ct, Sunnyvale, CA

NASA Aerospace Battery Workshop Huntsville, AL, Nov 14-16, 2017



## **Amprius Technologies Snapshot**



- Venture financed startup founded in 2009 with <u>novel silicon anode</u> materials technologies from Stanford University
- <u>50 independent patents and patent filings</u>
- Silicon Nanowire Anode Platform has demonstrated over <u>1200 Wh/L and 400 Wh/Kg</u> → highest Li ion cells in the industry
- <u>Pilot scale manufacturing</u> for Silicon Nanowire anode in 2018

# **Amprius Organization**







a JV between Amprius and Wuxi IDG in progress

# amprius

## **Amprius R&D and Manufacturing Centers**



 <u>California R&D Center & Headquarters</u> – focus on silicon nanowire anode and advanced materials

<u>Nanjing R&D Center</u> – focus on silicon/graphite composite anode as well as lithium-rich cathode and electrolytes.

<u>Wuxi R&D Center and Manufacturing Lines</u> – focus on battery technologies and manufacturing

#### **Materials Technologies**

**Battery Technologies** 

**Manufacturing Technologies** 



# **Mission Statement**



- Produce Ultra-High Capacity Silicon Nanowire Anodes for Li Ion Cells that have the Highest Energy Density Available
- Amprius Technologies' Cells are Game Changers for Mission Critical Applications
  Cells for Lightweight Drones



## **Amprius Solution – Silicon Anode**

### **Silicon** has **10X** Capacity vs. Carbon

5000 4000 3000 2000 1000 0 Carbon Antimony Aluminum Tin Germanium Silicon

#### Amprius solutions enable:

- \* Longer endurance / operation
- \* Smaller and/or lighter devices
- \* More functionalities
- \* Broader applications

#### Silicon anodes are the "holy grail" for lithium ion batteries





## **Amprius Solution – Silicon Anode**



#### **Fundamental Problem of Silicon-Containing Anode**

- Silicon swells 300% when charged with Lithium
- Silicon gets pulverized after a few charge/discharge cycles
- Amprius' solution:
  - 1. nanowires tolerate volume expansion and are rooted to substrate
  - 2. nanowires have micro and macro porosity that accommodate swell



## **Silicon Nanowire Structure**





| (54) |            | URALLY CONTROLLED<br>ION OF SILICON ONTO<br>RES                                                                                                                                                  |
|------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (71) | Applicant: | Amprius, Inc., Sunnyvale, CA (US)                                                                                                                                                                |
| (72) | Inventors: | Weijie Wang, Sunnyvale, CA (US);<br>Zuqin Liu, Sunnyvale, CA (US); Song<br>Han, Foster City, CA (US); Jonathan<br>Bornstein, Cupetino, CA (US);<br>Constantin Ionel Stefan, San Jose, CA<br>(US) |
| (21) | Appl. No.: | 14/710,103                                                                                                                                                                                       |

#### Major advantages:

- Highest content active silicon material (100%)
- High conductivity and connectivity (rooted to substrate)
- Low tortuosity high rate capability
- Ideal and adjustable porosity distribution
- High mass loading (2-3 mg/cm<sup>2</sup>)





# **Battery Landscape**



#### **Comparison of Energy Densities for Various Battery Chemistries**

Smaller **Amprius Si Nanowire Anode Li-Ion Cells** 900 Ref: 18650: 4.0Ah 800 Rof: 18650; 3.6Ah Li-P, Li-Ion New Systems Silicon nanowire anode cells 700 are far ahead of all other Ref: 18650; 2.6Ah 600 advanced Li-ion systems. Li-lon 500 Wh/I Ref: 454261 Polymer 400 Li-Polymer Ni-MH Li-Metal. 300 LFP Ref: 553450 Prismatic Cell 200 Li-Titanate Emerging Technologies Ni-Cd 100 Established Technologies Lead-Acid Lighter 100 200 300 400 500 600 Wh/kg

# **Li-ion Battery Landscape**



Silicon nanowire technology performance is <u>adjustable by</u> voltage & charge depth

A unique feature of the Si nanowire anode with variable capacity utilization





#### 

### Amprius Technologies High Energy Products: Span 4 Ah – 14 Ah Cells



#### Worlds highest energy density and specific energy Li-ion Cells



| Product ID      | Capacity<br>Ah | Energy<br>Wh | Wh/L | Wh/kg |
|-----------------|----------------|--------------|------|-------|
| ANW4.0-455056   | 4.0            | 14.5         | 1150 | 424   |
| ANW8.1-4551107  | 8.1            | 29.3         | 1220 | 430   |
| ANW14.2-8051110 | 14.2           | 51.2         | 1244 | 437   |

Voltage range 2.75-4.35V, measured at C/5 rate, Operating temperature range: -20 °C to 45 °C



### **Amprius Technologies High Energy Products: Cycle Life**





C/5 to C/10 rates, for aerospace applications

C/2 rate, for EV applications

### Amprius Technologies High Energy Products: Safety



#### Similar to or better than comparable graphite cells with the same capacity

| Application    | Test                   | Result |
|----------------|------------------------|--------|
|                | UL 1642                | Pass   |
| Military       | Nail Penetration       | Pass   |
|                | Drop                   | Pass   |
|                | Hot Box (110°C/1h)     | Pass   |
| NASA           | Short Circuit          | Pass   |
| INASA          | Overcharge             | Pass   |
|                | Overdischarge/Reversal | Pass   |
| Commercial/All | UN 38.3                | Pass   |

### Amprius Technologies High Power Products: Span 2 Ah – 10 Ah Cells



High Power capability with highest energy density and specific energy Li-ion Cells

|         | Product ID    | Capacity<br>Ah | Energy<br>Wh | Wh/L      | Wh/kg  | Capacity<br>Ah | Energy<br>Wh | Wh/L       | Wh/kg |
|---------|---------------|----------------|--------------|-----------|--------|----------------|--------------|------------|-------|
| emprius |               | Charge-        | Discharge    | e Rate: C | /5-C/5 | Charg          | e-Dischar    | ge Rate: 1 | .C-3C |
|         | ANW2.6-405056 | 2.8            | 10.1         | 915       | 365    | 2.65           | 9.0          | 815        | 325   |
|         | ANW10-7550106 | 10.6           | 38.4         | 1000      | 390    | 10.1           | 34.2         | 885        | 345   |

Voltage range 2.5-4.35V at 1C-3C rates

Operating temperature range: -20 °C to 55 °C

Cycle life of 150-300 cycles, depending on operating conditions



### **Amprius Technologies High Power Products: Rate Capability**





17

### **Amprius Technologies Products: High Energy** and Power Capability





#### Si NW anode/LCO Ragone Plot

It is more efficient to use high loading cathodes if the rate requirement allows it.

The curves can be extended to higher power at similar loadings if the cathode design is changed for power performance

Temperature increase during discharge is an important factor that depends on loading, foil thickness and tab design

# **Initial Target Markets**



# Applications that <u>must have</u> ultra-high energy density to be viable product

- Aerospace (UAVs)
  - High Altitude Pseudo Satellites (HAPS) **\$25bn Market by 2025**\*
  - Lightweight / hand-launched / long endurance drones
  - Long Endurance Multi-rotor drones
- Mission Critical
  - Wearable / conformal packs
  - Autonomous systems (robotics)



## **Data Communication Platforms**





# **Products and Applications High Altitude Pseudo Satellites (HAPS)**



- Solar-Electric aircraft serves as High Altitude Pseudo Satellites (HAPS)
- Low launch cost & very mobile

**High Efficiency Solar** Cells Charge High Energy

**Li-Ion Batteries** 

Amprius' cells will enable over 12 weeks endurance (Current endurance is 2 weeks)



(communications and imaging)

Payload



# Products and Applications **NASA Phase II Battery Pack**

- NASA Cell Specifications:
  - Cell capacity: 5.8Ah
  - Cell energy: 21Wh
  - Energy density: 860 Wh/L
  - Specific energy: 340 Wh/kg
  - >200 cycles
  - > 2.75-4.25V (Si/LCO)





# Products and Applications **NASA Phase II Battery Pack**

- NASA Battery Specs:
  - Configuration: 8S10P
  - Capacity: 58Ah
  - Energy: 1625Wh
  - Nominal Voltage: 28V
  - Energy density: 400 Wh/L
  - Specific energy: 250 Wh/kg
  - >200 cycles





## **Very Long Endurance Batteries for UAS**





Battery proposed to Navy for development

Amprius nanotechnology more than doubles endurance

| Specification            | Current -<br>Standard Battery | Current -<br>Long-Endurance<br>Battery | Amprius Very Long<br>Endurance Battery |
|--------------------------|-------------------------------|----------------------------------------|----------------------------------------|
| Energy (Wh)              | 349                           | 468                                    | 768                                    |
| Weight (g)               | 1680                          | 2048                                   | 2148                                   |
| Specific Energy (Wh/kg)  | 208                           | 223                                    | 346                                    |
| Flight Endurance (hours) | 2                             | 3                                      | 4.5                                    |

#### **Products and Applications**

#### **Mission Critical: Conformable Wearable Batteries**





## EV cells that exceed USABC 2020 goals



#### SiNW/NCM622

ISO form factor VIFB-/99/300

Capacity: 46 Ah at C/3 rate (30°C)

Cell weight = 450.7g

Cell size = 6.0x96x288mm (body only)

Energy: 350 Wh/kg and 925 Wh/L

Peak Power: 830 W/kg and 2200 W/L

80% capacity charged in 15 minutes



### Manufacturing Platform for Continuous Roll-to-Roll Anode Production

# amprius

#### **Replaces:**

- Graphite powder mixing
- Slurry mixing
- Roll coating (2x)
- Drying
- Calendaring

#### Bare Foil In $\rightarrow$ Finished Anode Out

- Pilot Tool capable of ~300 kWh/year
- At 100 MWh/year near \$/Ah parity with graphite *but* <u>40% higher energy density</u>



### **Road Ahead: What components to improve?**





The cathode material dominates both in weight and volume proportion



### Si Nanowire Anode Specific Energy Roadmap

Cathode Improvement

|            | Wh/kg | High loading, high<br>voltage LCO | >10Ah cells, LCO >10Ah cells, high capacity NCM |               | Conversion cathode | High loading conversion cathode |
|------------|-------|-----------------------------------|-------------------------------------------------|---------------|--------------------|---------------------------------|
| gy         | 600   |                                   |                                                 |               |                    |                                 |
| Energy     | 550   |                                   | Silicor                                         | n-Based Anode |                    |                                 |
| Specific I | 500   |                                   |                                                 |               |                    |                                 |
|            | 450   |                                   |                                                 |               |                    |                                 |
|            | 400   |                                   |                                                 |               | Graphite-Ba        | sed Anode                       |
|            | 350   |                                   |                                                 |               |                    |                                 |
| -          |       | 2017                              | 2018                                            | 2019          | 2020               | 2021                            |

29



Amprius is a pioneer and leader of high capacity silicon anode materials and high energy density lithium ion batteries.

Amprius was the first to introduce silicon anode polymer batteries to market in 2013 and manufactures the highest capacity silicon anodes and the highest energy density commercial batteries in industry at the present time. Amprius is the only silicon anode polymer battery manufacturer today.

Amprius technology and product platforms include high energy density silicon nanowire anode battery materials system, silicon-graphite anode battery materials system, lithium-rich cathodes, electrolytes, polymer binders and encapsulation materials.

Amprius high energy density batteries have been and can be used for smartphones, wearables, drones, robotics, aerospace devices, electrical transportation, military equipment.

Amprius has an advanced silicon-graphite anode battery manufacturing facility in Wuxi, China, a silicon anode production pilot line in Nanjing, China, a silicon nanowire anode pilot production line in Sunnyvale, California

# Thank You