High Energy and Power DensityLithium-Ion Cells with Silicon2019-11-20Nanowire Anode Technology

Ionel Stefan CTO, Amprius Technologies 1180 Page Ave., Fremont, CA

NASA Aerospace Battery Workshop Huntsville, AL, Nov 19-21, 2019

Amprius introduction - company structure

3

Amprius Solution – Silicon Anode

Silicon has **10X** Capacity vs. Carbon

5000 4000 Capacity [mAh/g] 3000 2000 1000 0 Carbon Aluminum Tin Germanium Silicon Antimony

Amprius solutions enable:

- * Longer endurance / operation
- * Smaller and/or lighter devices
- * More functionalities
- * Broader applications

- The design and manufacturing of silicon-containing anodes • remains a major challenge in research and industry.
- Amprius' Silicon Nanowire technology is a proven solution. ٠

Silicon Nanowire Anode Technology

Fundamental Problem of Silicon-Containing Anode

- Silicon swells 300% when charged with Lithium
- Silicon gets pulverized after a few charge/discharge cycles
- Amprius' solution:
 - 1. nanowires tolerate volume expansion and are rooted to substrate
 - 2. nanowires have micro and macro porosity that accommodate swell
 - 3. <u>Surface treated</u> to improve Solid-Electrolyte-Interphase & cycle life
 - 4. Anode thickness is reduced to half of a graphite electrode thickness

Silicon Nanowire Structure

(54)	STRUCTURALLY CONTROLLED DEPOSITION OF SILICON ONTO NANOWIRES
(71)	Applicant: Amprius, Inc., Sunnyvale, CA (US)
(72)	Inventors: Weijie Wang, Sunnyvale, CA (US); Zuqin Liu, Sunnyvale, CA (US); Song Han, Foster City, CA (US); Sonachian Bornstein, Cupatino, CA (US); Constantin Ionel Stefan, San Jose, CA (US)
(21)	Appl. No.: 14/710,103

Major advantages:

- Highest content active silicon material (100%)
- High conductivity and connectivity (rooted to substrate)
- Low tortuosity high rate capability
 - Ideal and adjustable porosity distribution
- High mass loading (2-3 mg/cm²)
- High first cycle efficiency

Installed "Pilot Tool" for Continuous Roll-to-Roll Anode Production

amprius

Replaces:

- Graphite powder mixing
- Slurry mixing
- Roll coating (2x)
- Drying
- Calendaring

Bare Foil In \rightarrow Finished Anode Out

• Pilot Tool capable of ~300 kWh/year

Installed in Sunnyvale... Feb-2018 Qualified..... Apr-2018 Second Tool..... Q4-2019 Upscaled Tool(s)..... 2021+

Proprietary and Confidential

Market Applications

Produce Ultra-High Capacity Silicon Nanowire Anodes for Li Ion Cells that have the Highest Energy Density Available

Amprius Technologies' Cells are Game Changers for Mission Critical Applications

Silicon Nanowire Progress

Si nanowire anode cells leverage progress in other cell components, amplifying improvements

Amprius Technologies Products: High Energy and Power Capability

* Numbers indicate maximum cell body temperature during discharge

High energy density cells (>400Wh/kg and 1200Wh/L) can be designed for lower power applications

Power density can be increased with small penalty in energy density

High power density cells (>1000W/kg) need thinner cathodes, and can achieve 325Wh/kg in 3C discharge

High Power capability with highest energy density and specific energy												
Product ID	Dimensions (T x W x H) mm	Mass g	Capacity Ah	Energy Wh	Wh/L	Wh/kg	Capacity Ah	Energy Wh	Wh/L	Wh/kg		
			Charge-Discharge Rate: C/5-C/5				Charge-Discharge Rate: 1C-3C					
CL0005	4.5 x 50 x 55	33.1	3.8	13.9	1125	420						
CL0007	4.2 x 50 x 55	27.8	2.8	10.1	875	365	2.65	9.0	780	325		
CL0012	4.6 x 50 x 55	31.7	3.6	13.2	1040	416	3.4	11.5	870	360		
CL0018	4.5 x 50 x 105	68.1	8.1	29.3	1240	430						
CL0021	5.4 x 54 x 64	49.5	5.4	21	1125	425						

Operating temperature range: -20 °C to 55 °C

Cycle life of 150-300 cycles, depending on operating conditions

Amprius Technologies High Energy Products: Cycle Life – Lower Rate Drone Applications

C/5 rate, for High Altitude Drone applications

Amprius Technologies High Energy Products: Pack temperature range

- 5°C shifts capacity by about 1% in the 15-30°C range
- Temperature range in the pack should not exceed 5°C (20±2.5°C) to maintain initial cell matching (±1%)

Amprius Technologies High Power Products: Rate Capability

0.5

0

2.5

3

Discharge capacity (Ah)

Amprius Technologies Medium Power Products: Discharge Voltage profiles

4.5 35 4.5 -Temperature (C) -----Voltage(V) _____C/5 Power (W) 4.3 4.3 30 _____C/2 4.1 4.1 and Temperature, oC 52 12 12 3.9 3.9 - 30 3.7 3.7 Voltage (V) 3.5 3.3 > Voltage, 3.5 3.3 **Power, W** 10 3.1 725Wh, 5lb 3.1 2.9 2.9 2.7 5 2.7 2.5 2.3 0 2.5 0.5 1.5 2.5 3.5 0 2 3 4 1 20 40 60 80 100 120 140 Capacity (Ah) Time, min

>400Wh/kg at C/5 and 370Wh/kg at 2C

CL-0012

Designed for eVTOL and multirotor drones – double endurance typically

New developments – higher cycle life

Voltage range 2.75-4.25V at C/5 rate, 23°C

~50% increase in cycle life, the direction has room for improvement

New developments – higher specific energy

- High capacity LRMO cathode material
- ELY#951: New electrolyte composition + high voltage additive

Voltage range 1.5-4.8V at C/10 rate, 23°C

More electrolyte development for higher voltage operation needed

Roadmap: Cathode performance critical for further specific energy improvement

The cathode material dominates both in weight and volume proportion

Si Nanowire Anode Specific Energy Roadmap

Cathode Improvement

Power/energy ratios are optimized in the design space (blue ellipses)

Thank You

Amprius wishes to acknowledge the funding received from US Army (Contract No. W911QY-12-C-0118), NASA (Contract No. NNC16CA10C), USABC (Project No. DE-EE0006250) and DOE (Award No. DE-EE0005474).

> Ionel Stefan, (510) 512-5484, ionel@amprius.com Jon Bornstein, (408) 406-2671, jonb@amprius.com