

GOES-R Lithium-Ion Battery Life Test & Workhorse Battery Performance

NASA Aerospace Battery Workshop

2018 November 27-29, Huntsville AL

Jon Tucker & Robert Bauer, Lockheed Martin Space

Jon Tucker 2018 NASA Aerospace Battery Workshop Huntsville, AL Nov. 27-29, 2018 Joseph Springer & Leonine Lee, NASA Goddard Chengsong Ma Saft Space & Defense

<u>Jon.R.Tucker@lmco.com</u> <u>Joseph.J.Springer@nasa.gov</u> <u>Chengsong.Ma@saftamerica.com</u>

Outline

- Overview
- Life Test Battery Description
- Spacecraft, Electrical Power Subsystem Overview
- Battery Charge Control and State of Charge Profile
- Life Test Description
- Life Test Capacity Results
- Workhorse Battery Characteristics
- Workhorse Battery Performance Summary
- VL48E Cell Characteristics and Battery Performance
- Conclusions

- Lockheed Martin is under contract to NASA Goddard to design and build four GOES-R series satellites to be operated by NOAA.
 - GOES-R is the next-generation geostationary NOAA weather satellite
 - <u>https://www.goes-r.gov/</u>
- Saft's Space & Defense Division provides the VL48E cells and the GOES-R series lithium-ion batteries to Lockheed Martin.
- GOES-R series battery life testing is in process at Lockheed Martin.
- 20 accelerated GEO seasons have been completed.
 - 20 seasons represents 10 years of on-orbit operation.
- A GOES-R series qualification & I&T workhorse battery were built and supported spacecraft-level testing since 2014.
- The GOES-R series life test battery and workhorse batteries' performance will be presented.

Fully Assembled Battery (with non-flight radiator shield attached)

Life Test Battery Characteristics

- Battery designed and manufactured by Saft in Cockeysville, Maryland.
- Life test battery built to flight drawings and processes.
 - Battery acceptance test performed 2014 Feb Jun
- VL48E cells
 - Rated capacity (C_r) = 45.4 Ah at 20° C
 - C_r = required BOL capacity from 4.1 V to 3.0 V at $C_n/2hr$
 - Cells formed in 2011 Mar
- Electrical Configuration
 - 3 cells in parallel to form a cell bank
 - 12 cell banks in series to form a battery
 - Balancing circuits under FSW control apply current as needed to individual cell banks
 - Nameplate capacity (C_{bn}) = 113.5 Ah
 Rated capacity (C_{br}) = 136.2 Ah at 20° C
- Mechanical configuration
 - 3 cells in a module; 12 modules in a battery
 - Thermistors, heaters, and radiator for thermal control

- Isolated aluminum housing to protect against shorts and to enclose possible cell failures

<image>

Battery Locations

Stowed Spacecraft

Battery Installed on Spacecraft

Jon Tucker

2018 NASA Aerospace Battery Workshop Huntsville, AL Nov. 27-29, 2018

Electrical Power Subsystem Diagram

Huntsville, AL

Jon Tucker

Nov. 27-29, 2018

Battery Charge Control and SOC Profile

Charge Control

- Charge control uses a constant current/constant voltage approach
 - Constant current at C_{br}/13hr until cell voltage reaches end-of-charge set point
 - Constant voltage (taper charge) until current drops to approx. C_{br}/210hr
- Balancing performed at end of recharge; current = C_{br}/210hr

Jon Tucker 2018 NASA Aerospace Battery Workshop Huntsville, AL Nov. 27-29, 2018

State-of-Charge Profile

Life Test Description

- Flight-like charge control and balancing
- Real-time eclipse season cycling
 - Eclipse season is 44 days; Eclipse discharge once per day
 - Eclipse duration varies over the season from a few minutes to 70 minutes
 - Average eclipse discharge current for longest eclipse = 73 A
 - Max eclipse discharge = 75% C_{bn} (85 Ah out)
 - Electric thruster discharge once every four days, DOD = 36% C_{bn} (41 Ah out)
 - Average electric thruster discharge current = 28 A
- Accelerated solstice season cycling
 - Accelerated solstice season is 11 to 17 days
 - Two electric thruster discharges per day, DOD = 36% C_{bn} (41 Ah out)
 - Average electric thruster discharge current = 28 A
- End-of-charge voltage (EOCV) increased over life
 - BOL is 3.95 V/cell bank, EOL is 4.05 V/cell bank

• Battery environment held at 15°C throughout test

Life Test Capacity and Impedance Results

Test Condition*	Capacity (Ah) [†]	Cell Impedance (mΩ) [‡]
Final acceptance test at Saft	136.22	3.25
Baseline just before life test cycling began	139.87	3.13
After 4 eclipse/solstice seasons	138.96	3.29
After 10 eclipse/solstice seasons	140.31	3.58
After 20 eclipse/solstice seasons	141.80	3.89

* Capacity tests at LM used same special test equipment that is used for life test

[†] Measured from 4.1 V to 3.0 V at Cn/2hr

Increased capacity likely due to test equipment/measurement variations

[‡] Average cell impedance (ohmic and polarized) at start of capacity discharge

No Discernable Change in Capacity After 20 Seasons

Charge/Discharge Voltage

Voltage fade due to impedance increase

Max/Min Cell Bank Voltage

EOCV increases negate voltage fade

- Used in spacecraft testing from 2014 April to present.
 - Flight batteries installed shortly before spacecraft ships to launch site
- Cells formed in 2011 March, same lot as life test battery.
- One battery was exposed to proto-flight testing.
 - Higher vibration level and more extreme thermal cycling than acceptance
 - Testing perform from 2013 November to 2014 April
- Other battery was exposed to qualification testing.
 - Higher vibration level and more extreme thermal cycling than proto-flight
 - Testing perform from 2013 August to 2014 January
- Capacity test performed in 2018 February, 7 years after cell formation.

Workhorse Battery Utilization and Capacity

Workhorse Battery Utilization

Work-Horse Battery Performance

- Workhorse cells formed in March 2011.
- Average cell acceptance 20 °C Capacity: 45.64 Ah
 - Cell acceptance testing 6-2011 12-2011
- Qual Battery 20 °C Capacity:
 - Expected after cell testing: 137.2 Ah
 - January 2014: 138.2 Ah
 - February 2018: 140.3 Ah
- I&T Battery 20 °C Capacity
 - Expected after cell testing: 136.7 Ah
 - March 2014: 136.5 Ah
 - February 2018: 138.2 Ah

No capacity loss after 6.5 years

2018 NASA Aerospace Battery Workshop Huntsville, AL Nov. 27-29, 2018

Jon Tucker

- Capacity increase expected during early seasons.
 - Due to soaking of electrolyte into electrode, and repartition of binder on positive electrode.
- Capacity is expected to fade by season 20 observed increase likely due to measurement accuracy.
 - 15-year capacity fade should be less than 1%.
- Discharge voltage is decreasing as expected due to impedance increase over life.
- Expected energy decay is 5% to 6% after 15-year mission.
 - Depends on battery storage voltage & charge voltage at solstice/eclipse.
 - Anode/electrolyte designed for negligible SEI decay during 15-year GEO mission.
 - Cathode formulized to minimize the cathode capacity fade, by providing a good electric conduction network and protected NCA particle surface.

Conclusions

GOES-R Series Lithium-Ion Life Test Battery Results

- Accelerated GEO testing: 20 seasons of 30 complete
 - Real-time eclipse seasons of 44 days each.
 - Maximum eclipses at 75% DOD of C_{bn}(113.5 Ah).
 - Accelerated solstice seasons of 11-17 days.
- No degradation in 20 °C capacity after 20 seasons of accelerated GEO
 - BOL 20 °C Capacity: 139.9 Ah
 - 20-season accelerated GEO 20 °C capacity: 141.8 Ah
 - 1.36% delta due to test equipment accuracy and temperature control.

GOES-R Series Work-Horse Battery Performance

- No degradation in 20 °C capacity 6.5 years after cell acceptance testing.
 - Four years of ground operations at ambient.
 - Majority of time (~80%) at 3.60 V 3.65 V and 20 °C.
 - Remaining time at 3.65 V and 0 °C or 3.95 V 4.05 V and 15 °C 20 °C.

Batteries/Cells Are Performing as Expected – No Concerns with Meeting 15-year Mission Life