

GLASS-CERAMIC ELECTROLYTES FOR THE NEXT-GENERATION STORAGE

Dr. Alevtina (Alla) White-Smirnova Associate Professor, SDSMT Director NSF IUCRC CEPS <u>Alevtina.Smirnova@sdsmt.edu</u> <u>www.GreenCEPS.com</u>

SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY HIGHLIGHTS

- Established in 1885
- Wide array of BS, MS, and PhD degrees
- Perfect fit with next-generation ASSB technology
- Sanford Underground Research Facility (SURF) - \$1B in 2020
- Ellsworth Air Force Base; Expansion for B-21 project
- NSF IUCRC <u>C</u>enter for green solid-state <u>E</u>lectric <u>P</u>ower Generation and <u>S</u>torage (CEPS)

NSF IUCRC <u>CENTER FOR GREEN SOLID-STATE ELECTRIC</u> <u>POWER GENERATION AND STORAGE (CEPS)</u>

- Acceleration of solid-state technology transfer to the market
- Pre-competitive research

ACADEMIC CORE: FOUR UNIVERSITIES (CURRENT STATUS)

CEPS MEMBERS: IUCRO

- INDUSTRY
- NATIONAL LABS
- FEDERAL AGENCIES
- THE GOVERNMENT

Real time web visitor statistic 09-30-2019

CEPS

OUTLINE

Introduction

Wishlist and expectations

Solid-state electrolytes overview

- Glass-ceramic vs. ceramic electrolytes
- Synthesis

Antiperovskites

- Chemical composition
- Structure and morphology
- Li-ion transport mechanisms
- Doping for lithium storage
- Electrochemical cells-interfaces

LIQUID VS. SOLID-STATE ENERGY STORAGE WISH LIST

- Safe
- Charge faster
- Cheaper
- Smaller
- Li anode

FLAMMABLE ELECTROLYTE

- Higher voltages
- More power
- Last longer
- Eco-friendly
- Work for all applications

EXPECTATIONS FROM SOLID-STATE

- Major consortia/centers focused on energy storage:
 - Joint Center for Energy Storage Research (JCESR)
 - International/national collaborative projects
 - Battery with liquid electrolyte
 - Battery with solid electrolyte; no liquid electrolyte

SOLID-STATE ELECTROLYTES: BIG PICTURE

- Major problems:
 - Lithium-ion diffusion
 - Grain boundary effects
 - Electrochemical stability
 - Materials cost
 - Processability

Bachman et al., Chemical reviews (2015) 116(1) 140-162. Wu et al., Ren. and Sust. En. Reviews, 109(2019) 367-385.

GLASS-CERAMIC VS. CERAMIC ELECTROLYTES

Properties	Ceramic, e.g.	Glass-ceramic
	Garnets	$Li_3P_7S_{11}$, $Li_{10}GeP_2S_{12}$, and Na_3PS_4

SYNTHESIS OF LI-ION GLASS-CERAMIC ELECTROLYTES

From aqueous solutions

- Dissolution of inorganic precursors in water
- H₂O evaporation
- Heat-treatment in vacuum for at least 48 hr Zhao, Daemen, Braga (2012) WO Patent 2,012,112,229.

Pulsed laser deposition

- Composite target from mixed inorganic precursors
- Spray deposition on heated substrate (100-400°C)
- Heat-treatment in vacuum for 48 hr

Lu, Daemen, Zhao (2015) US20150364788A1

Spray pyrolysis

- Dissolution of inorganic precursors in water
- Spray deposition on heated substrate (100-400oC)
- Heat-treatment in vacuum for at least 48 hr Oladeji, US 8,349,498 B2, 2013.

From solid-state precursors

- Mechanical ball milling (~400 rpm; 20 hr)
- Melt quenching/hot-pressing
- Sintering at elevated pressures and temperatures *Zhao, Daemen, (2016) US Patent 9,246,188 B2.*

Wu et al., Renewable and Sustainable Energy Reviews, 109(2019)9367-385

ANTIPEROVSKITE FAMILY

- Perovskites: ABO₃, e.g. Li_{3x}La_{2/3-x}TiO₃ (LLTO)
 - Li_{3/8}Sr_{7/16}Ta_{3/4}Hf_{1/4}O₃ (LSHT) σ=3.8×10⁻⁴ S/cm at 25°C; E_a=0.36eV
 - Antiperovskites: ABX₃ = X₃AB
 - X: metal (Li⁺, H⁺, group II, or TMs)
 - A: halogen (F⁻, Cl⁻, Br⁻, l⁻), chalcogen (S, Se, Te), or a cluster ion
 - B: chalcogen (O, S, Se, Te)
 - Lithium-ion transport:
 - Diffusion via interstitial sites
 - Migration through optimum channels
 - Hopping between sites
 - Aliovalent/interstitial substitution
 - Distribution of Li-ions at different sites
 - Distortion /Disorder at sublattices

Zhao and Daemen, J. Am. Chem. Soc. 2012, 134, 15042–15047 Li, Goodenough, et al., Angew. Chem. Int. Ed. 2016, 55, 9965–9968

Zhang et al., J. Power Sources 389 (2018) 198-213

LITHIUM-ION MIGRATION MECHANISMS IN ANTIPEROVSKITES

- Cubic structure promotes 3D Li⁺ diffusion
- Two migration mechanisms
 - Through vacancies as charge carriers
 - Interstitial migration
- In LiCI-deficient antiperovskites: interstitial migration is due to charge compensation (increase of interstitial sites)

Mouta et al., Chem. Mater. 2014, 26, 7137–7144 Zhao and Daemen, J. Am. Chem. Soc. 2012, 134, 15042–15047

ROLE OF H₂O in ANTIPEROVSKITE CRYSTAL STRUCTURE FORMATION

350°C

2LiOH+LiCI→ Li₃OCI+H₂O

600°C

- $\text{Li}_2\text{O}+\text{LiCl} \rightarrow ?$
- No reaction even at 600°C
- H₂O plays significant role in formation of cubic phase
- Li_{3-x}OH_xX (X=CI and Br)

Li, Goodenough, et al., Angew. Chem. Int. Ed. 2016, 55, 9965–9968

STRUCTURAL AND PHASE TRANSFORMATIONS IN ANTIPEROVSKITES

Differential Scanning Calorimetry (DSC)

- *
- Endothermic peaks due to local disorder- octahedral tilting
- Substitution of halogens is an efficient method of structural manipulation

Zhao and Daemen; J. Am. Chem. Soc. 2012, 134, 15047-15042.

Braga et. al., Mater. Chem. A, 2014, 1–11 13

EFFECT OF COOLING AND STABILITY IN PRESENCE OF LITHIUM METAL

- Superior stability against Li anode
- Extreme conditions above the melting point of Li metal
- $2\text{Li}_2\text{OHCl}_{(s)} + 2\text{Li}_{(l)} \rightarrow 2\text{Li}_2\text{O}_{(s)} + 2\text{Li}\text{Cl}_{(s)} + \text{H}_{2(g)}$ • Decomposition of Li₂OCL into precursors
 - Decomposition of Li₃OCI into precursors in presence of molten lithium

Z. Hood et al., Li₂OHCI crystalline electrolyte for stable metallic lithium anodes. J. Am. Chem. Soc., 138 (2016) 1768.

ANTIPEROVSKITE DOPING FOR LIB ELECTROLYTES

$Li_3O(A_{1-z}A'_z)_{1-\delta}$

Ab Initio Simulation

Wang, et al. J. Materials Chemistry A, 6.1 (2018) 73-83.

- Li₃OCI→ Li₃SCI adopts a layered structure
- Li₃SCI → Li₃SBr or non-halogen functional groups such as NH₂⁻ or OH⁻
- Substitution of O with S: increase in lattice parameters associated with weakened binding

15

ANTIPEROVSKITE DOPING FOR LIB CATHODES

- Displacement of Li⁺ in Li₃AX for metal ion
- Results in higher Li⁺ mobility
- Isotropic 3-D Li⁺ migration
- High storage capacity
- Li₂O+ Fe + Ch→(Li₂Fe)ChO
- Ch=S, Se, Te (750°C and 10⁻⁴mbar) s
- Li₂FeSeO= 163 mAh/g
- Li₂FeSO= 227 mAh/g

Martin Valldor group: Anti-Perovskite Li-Battery Cathode Materials J. Am. Chem. Soc. 2017, 139, 9645–9649

(Li₂Fe)TeO antiperovskite Ll CATHODE

LITHIUM METAL ANODE

LI-ION STORAGE MECHANISMS IN ANTIPEROVSKITES

XANES (Fe K edge):

- Fe valence state: +2/+3
- Upon Li extraction (charging): Fe²⁺ oxidized
- Fe nearest neighbor (Li, Fe): 2.8Å

Intermediate compound (Li_xFe)SO (x =0.8)

b а 0² 1s S² 2p S² 2p_{1/2} pristine Intensity (arb. units) 2.4 V S⁰ 2p₃₁₂ S⁰ 2p₁₁₂ 2.9 V 1 cycle 160 162 164 166 530 532 534 536 Binding energy (eV) XPS: Partial oxidation of S²⁻

Li⁺ extraction (charging) >> faster than insertion

ACS Appl. Energy Mater. 2018, 1, 6593–6599

ANTIPEROVSKITES IN HALF-CELLS

Methods:

- **Delamination** •
- **MS-PVD** •

Cast glass-ceramic electrolyte target

Electrolyte target Plasma from the in PVD gun

electrolyte target

Example: Collaboration between SDSMT and NanoCoatings, Phase II DOD projectPlasma (MS-PVD) for DESIGN of antiperovskites

Mechanical and chemical stability of the antiperovskites electrolyte in MS-PVD has been confirmed (DOD Phase I)

ANTIPEROVSKITE CRYSTAL STRUCTURE IN MOISTURE-FREE ENVIRONMENT

- Slow cooling initiates formation of crystal structure
- Properties similar to sulfides

No compression
Compression

Dondelinger et al., Electrochim. Acta (2019) 306, 498-505 20

CONDUCTIVITY AT DIFFERENT TEMPERATURES

Cu-C/lithium halide/Li metal (0.05V-1.00V)

Dondelinger et al., Electrochim. Acta (2019) 306, 498-505

21

TEMPERATURE AND THICKNESS EFFECTS

Cu-C/Lithium halide/Li metal (0.05V-1.00V)

CYCLIC VOLTAMMETRY

Cu-C/Lithium halide/Li metal (0.05V-1.00V)

ELECTROCHEMICAL STABILITY VS. LITHIUM

Cu-C/electrolyte/Li metal (0.05V-1.00V)

ANTIPEROVSKITES IN FULL CELLS

DEPOSITION BY PLASMA-ENHANCED PVD

Cathode columnar structure from the cathode target

AC IMPEDANCE VS. TEMPERATURE AFTER CELL ASSEMBLY

AI-C/LFP (90%), C(10%), Li₃CIO/ Li₃CIO/ Lithium

Decrease in charge transfer resistance with temperature

27

COMPARICON: AC IMPEDANCE BEFORE AND AFTER CELL EXPOSURE TO HIGHER TEMPERATURES

AI-C/LFP (90%), C(10%), Li₃CIO/ Li₃CIO/ Lithium

Before testing

After exposure to 100°C

property for all-solid-state lithium battery. Scientific reports. (2013) 3:2261.

INDUSTRIAL RELEVANCE OF ANTIPEROVSKITES

	Garnets, e.g. LLZO*	Antiperovskites
Melting/processing T	400°C** high	250-300°C low
Cost, \$ per kg	6950	~100
Morphology	Grain boundary effects	Amorphous
Conductivity at RT (Sm/cm)	3×10 ⁻⁵ - 10 ⁻³	2×10 ⁻³ (PLD)->10 ^{-1***}
Electrochemical stability in presence of Li metal*	Yes, red. potential 0.05V	Yes, impede formation of dendrites
Sensitivity to moisture and CO ₂	Yes and CO ₂	Moisture
Electrochemical window	>5V	>5V
Band gap	Appr. 6.4 eV****	5.0 ⁰ - 8.5 eV***

*The lowest reduction potential (0.05 V) and the least favorable decomposition reaction energy (0.02 eV/ atom) at 0 V. **Pfenninger et al., <u>Nature Energy</u>, 4, (2019) 475–483.

*** Cluster ions, e.g. BH₄^{+****} Thompson, ACS Energy Lett., 2 (2017) 462–468. ^oZhang, Phys. Review B, 87 (2013) 134303.

CONCLUSIONS: WHAT NEEDS TO BE ADRESSED

- Coupled morphological, electrochemical, and mechanical behavior of antiperovskites
- Origins of spatial/temporal variations at the interfaces, both cathode and anode to move this technology forward

GLOBAL SOLID-STATE LI-ION BATTERY MARKET POTENTIAL FORECAST BY REGION

ACKNOWLEDGEMENTS

- Faculty
- Students
- NanoCoatings Inc.

www.GreenCEPS.com

- Matthew Dondelinger
- Abu Numan Al-Mobin
- Frank Kustas
- Joel Swanson
- Armand Lannerd
- Chris Jahnke

QUESTIONS

1899, Belgium Car with a lead-acid battery Speed: 67 mph

2019, Ford F-150 Fully electric truck with a lithium-ion battery; Power: tows 1.25 million lb. train