Fire and Gas Characterization
Studies for Lithium-ion
Cells and Batteries

Daniel Juarez Robles, Ph. D., Judy Jeevarajan, Ph.D.

Electrochemical Safety
Underwriters Laboratories Inc.

November 17, 2020 2020 NASA Aerospace Battery Workshop

Motivation

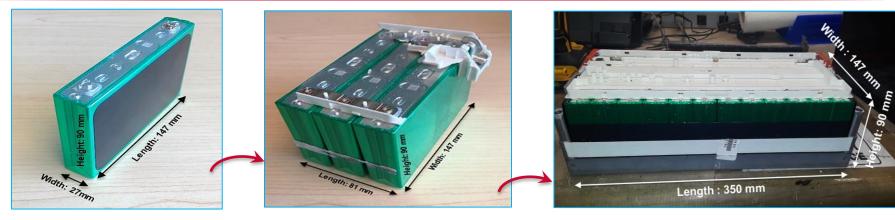
Thermal Runaway

Thermal runaway is defined as the incident when an electrochemical cell increases its temperature through self-heating in an uncontrollable fashion.

- Thermal runaway propagates when the cell's generation of heat is at a higher rate than the heat it can dissipate.
- The intent of this project is to severely abuse a single cell such that it is most likely to enter thermal runaway with the presumption that a single cell may enter thermal runaway during transport.
- Under certain severe failure conditions, lithium-based rechargeable cells can emit gases which may be harmful to humans and/or may form a combustible mixture in sufficient concentrations. Examples may include, but are not limited to, carbon monoxide (CO), carbon dioxide (CO₂), hydrogen (H₂), organic solvent vapors and hydrogen fluoride (HF).

Research Topic

Objective

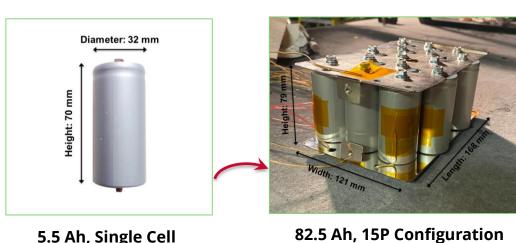

The objective of the Li-ion battery (LIB) fire research is to develop data on fire hazards from two different types of lithium-ion battery chemistries (LFP and NMC) relative to fire size and production of venting gases and smoke.

Effect of the cell chemistry. Changing the anode/cathode chemistries directly affects the heat released when the cell undergoes thermal runaway.

Size and configuration of LIB. The analysis proposed here will help to answer the question, *How do the results from single cell fire tests translate to large modules and battery systems?*

Test Samples

25 Ah, Single Cell


E = [2.7, 4.2] V

Single Cell

75 Ah, 3P Configuration

E = [2.7, 4.2] V

Module

5.5 Ah, Single Cell E = [2.0, 3.6] V

E = [2.0, 3.6] V

75 Ah, 3P4S Configuration

E = [10.8, 16.8] V

Battery

82.5 Ah, 15P4S Configuration

E = [8.0, 14.4] V

Test Setup

• Cathode Chemistry:

NMC (Prismatic), **LFP** (Cylindrical)

Battery Scale :

Single Cell, Module, Battery

• State of Charge: 100% SOC

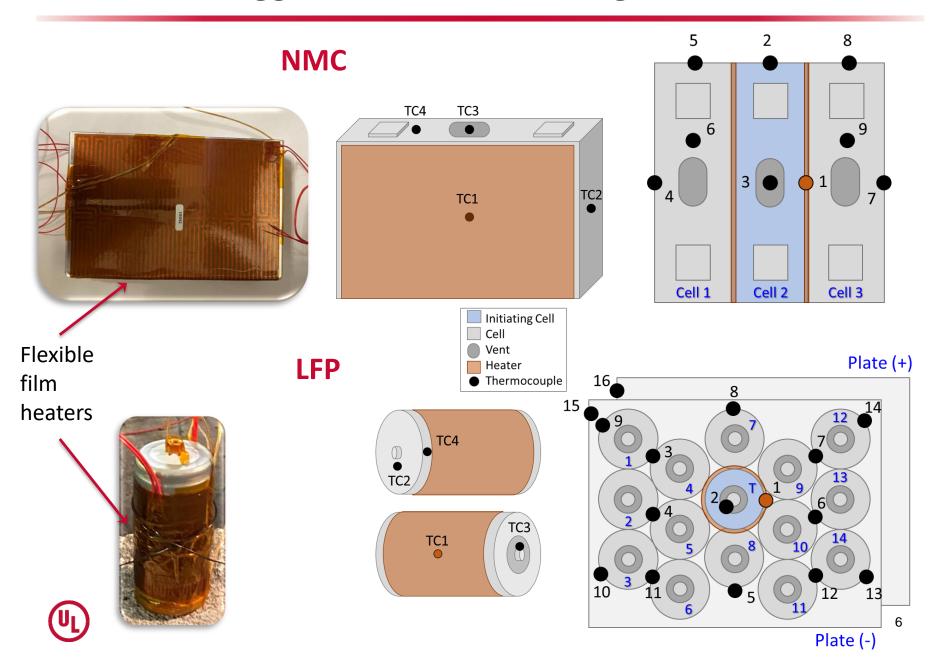
Heater Specs: 120 V, 10 W/in²

NMC: 4" × 6", LFP: 2" × 2"

• Heating Profile:

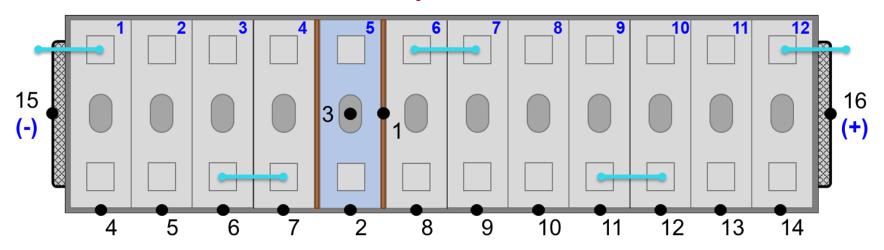
UL 9540A, "Test Method for Evaluating Thermal Runaway Fire Propagation"

HR = 10 °C/min to a hold temperature of 200 °C

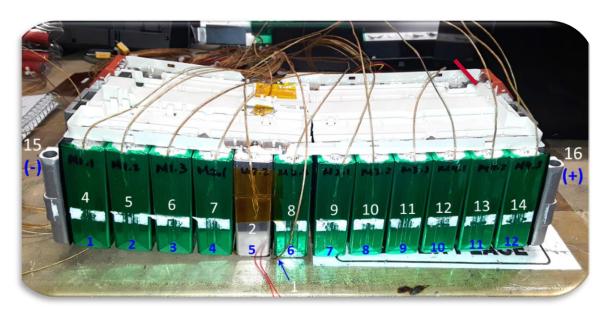

- Temperature Measurements: K-Thermocouple (30 AWG)
- Gas Analysis:

Organic compounds. Fourier Transform Infrared Spectrometry (FTIR).

Gas composition. Gas Chromatography – Mass Spectrometry.



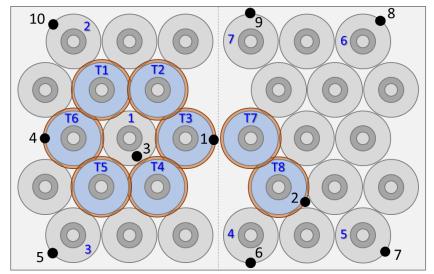
Trigger Cells and TC Configuration



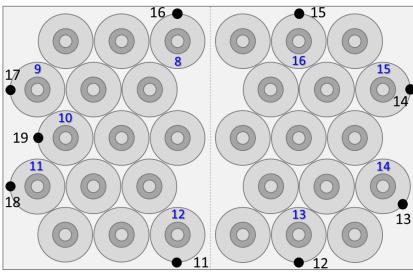
Trigger Cells and TCs Setup (NMC Battery)

Top View

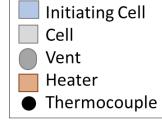
- Initiating Cell
- Cell
- Vent
- Heater
- Thermocouple



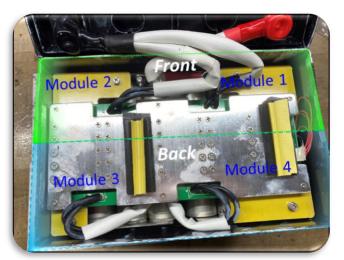
7


Trigger Cell and TCs Setup (LFP Battery)

Front

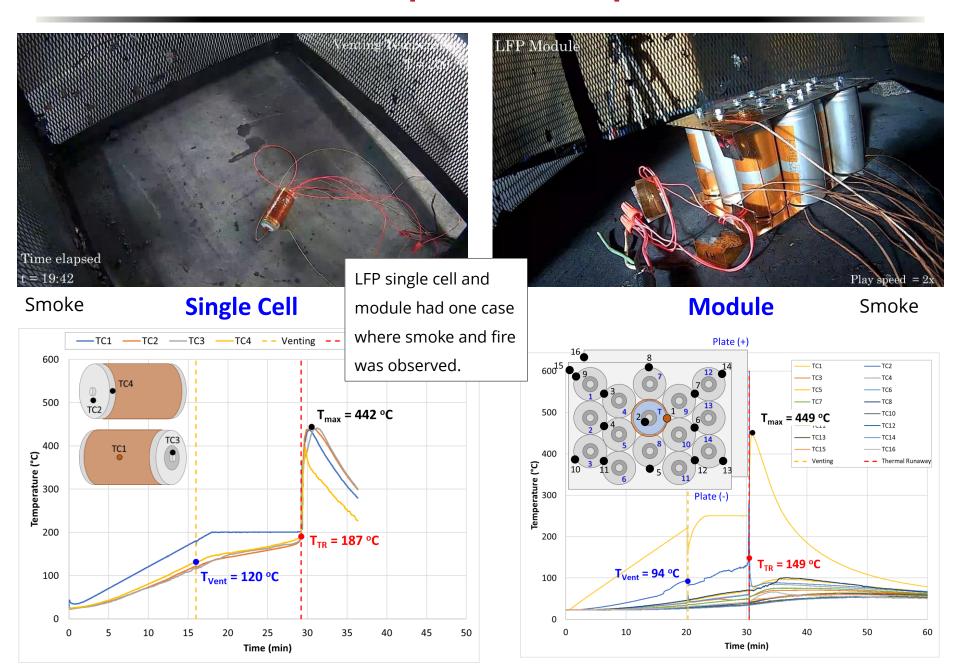


Module 1 Module 2


Back

Module 3 Module 4

15P4S Configuration


The module labels are only a reference to its position inside the battery.

RESULTS

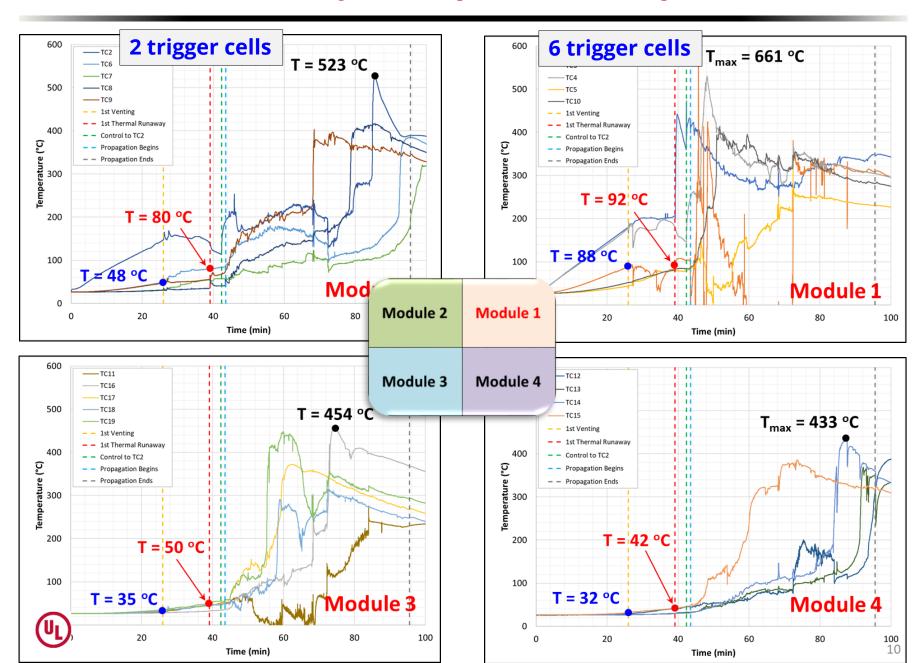
Temperature Response

LFP - Temperature Response

LFP Battery - Test

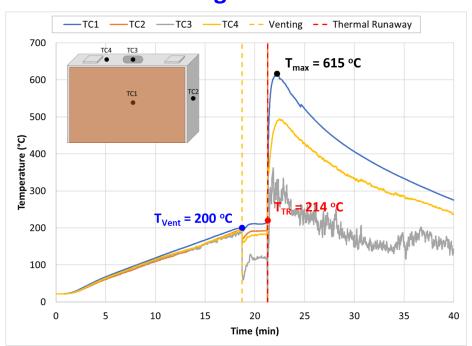
16.8 V; 82.5 Ah (**1.26 kWh**)

Battery after the test

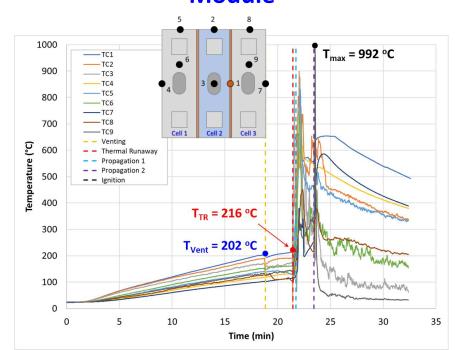


- The outer plastic case was softened on all faces and breached in several locations where gas venting was observed.
- Some solidified piles of particulate, resembling plastic, were observed around areas where steady venting occurred.

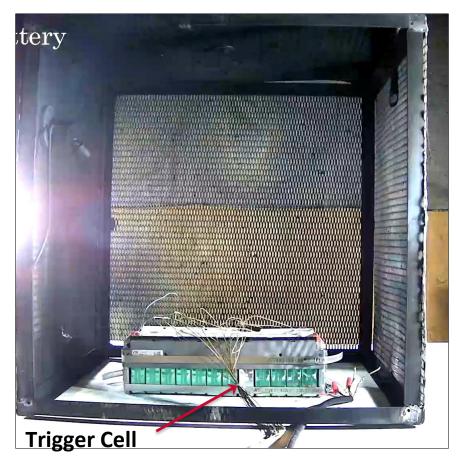
LFP Battery - Temperature Response



NMC - Temperature Response

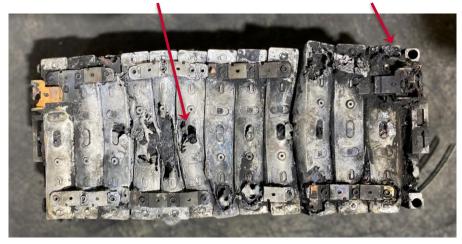


Single Cell Only Smoke



Module Smoke and Fire

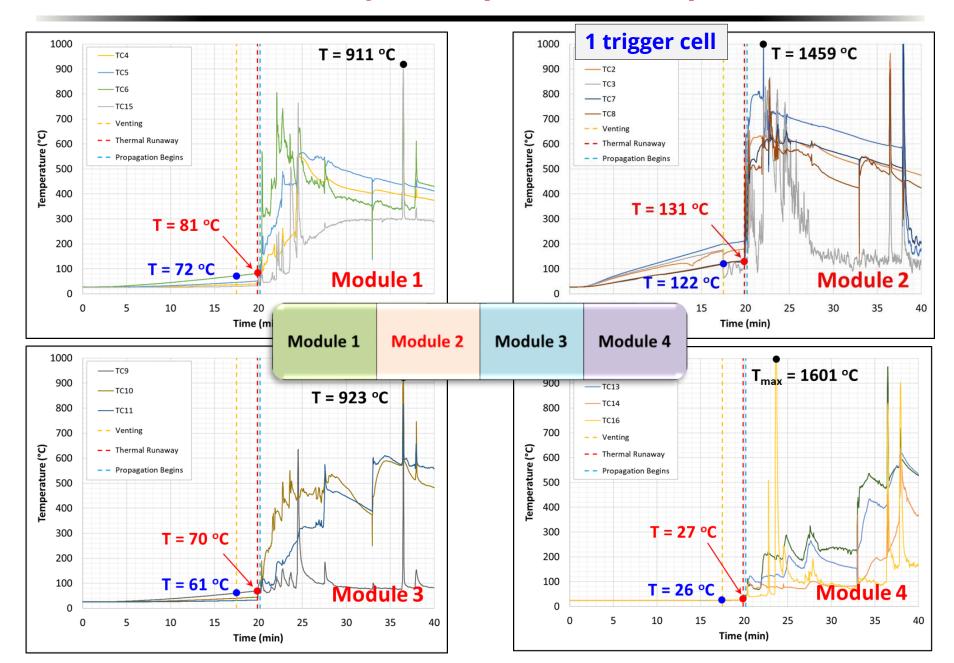
NMC Battery - Test


14.8 V; 75 Ah (**1.1 kWh**)

Flame jetted from the cell vents as well as ruptures on the sides of the cell casing.

Activated vent holes

Cell metal casing melting


Cell rupture

Thermal runaway occurred in all the cells.

NMC Battery - Temperature Response

Sample Size Effect

NMC	$T_{TR} [^{o}C]$	t_{TR} [min]	$T_{Max} [^{o}C]$	$t_{Max}[min]$
Single Cell	213	22	603	23
	214	21	615	22
	213	22	591	23
	211	23	609	24
Module	216	21	992	23
	216	20	764	21
Battery	170	20	1459	22

LFP	$T_{TR} [^{o}C]$	t_{TR} [min]	$T_{Max} [^{o}C]$	t _{Max} [min]
Single Cell	203	90	288	90
	187	34	405	36
	189	38	383	40
	187	29	442	31
Module	139	97	1093*	98
	149	30	449	31
Battery	92	39	661	45

RESULTS

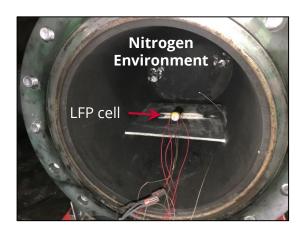
Gas Analysis

Production of Venting Gases

NMC	$SRR[m^2/s]$	Total Smoke Release	HRR [kW]	CHR [MJ]
	0.5	14.9	0	0
Single	0.8	24.9	0	0
Cell	3.2	26.7	0	0
	2.2	23.1	0	0
Module	2.4	70.6	58	2.9
	2.6	97.2	20	0.9
Battery	2.8	345.9	106	24.4

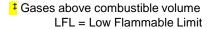
Chemical heat release (CHR) rate is not reported because external flaming did not occur. Total smoke release was calculated from the moment of venting until the end of visible gas and smoke release.

LFP	$SRR\left[m^2/s\right]$	Total Smoke Release	HRR [kW]	CHR [MJ]
	0.2	2.0	3.3	0
Single	0.5	6.0	0.0	0
Cell	0.4	7.9	0.0	0
	0.5	8.1	0.0	0
Module	0.4	42.3	33	9.5
	0.3	14.7	0	0
Battery	1.1	213.7	0	0



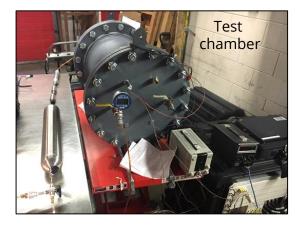
Cell Gas Composition - LFP

5.5 Ah Li-ion LFP cylindrical cells, **18 Wh**

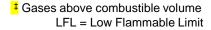


Volume of gas released during thermal runaway in a single cell – **3 Liters**

Component		Measured	Component
Component		%	ĹFL
Carbon Monoxide	CO	23.76 % ‡	10.9 %
Carbon Dioxide	CO ₂	26.65 %	N/A
Hydrogen	H_2	36.03 % [‡]	4.0 %
Oxygen	O_2	0.92 %	N/A
Methane	CH ₄	3.55 %	4.4 %
Ethylene	C_2H_4	3.20 % [‡]	2.4 %
Ethane	C_2H_6	0.57 %	2.4 %
Propylene	C_3H_6	2.71 % ‡	1.8 %
Propane	C_3H_8	0.15 %	1.7 %
Propadiene	C_3H_4	0.01 %	1.9 %
N - Butane	C ₄ (Total)	0.83 %	-
N - Pentane	C ₅ (Total)	0.09 %	-
Hexane	C_6H_{14}	0.00 %	1.0 %
Dimethyl Carbonate (DMC)	$C_3H_6O_3$	1.08 %	Not specified
Ethyl Methyl Carbonate (EMC)	$C_4H_8O_3$	0.46 %	Not specified
Total	-	100 %	-
* Individual C4 Components		-	-
Butane	C ₄ H ₁₀	0.04 %	1.4 %
Butene	C_4H_8	0.60 %	1.5 %
Butadiene	C_4H_6	0.19 %	1.4 %
** Individual C5 Components		-	-
Pentane	n-C ₅ H ₁₂	0.09 %	1.1 %


Cell Gas Composition -NMC

Automotive battery



25 Ah Li-ion NMC prismatic cell, **95 Wh**

Volume of gas released during thermal runaway in a single cell – **41 Liters**

Component		Measured %	Component LFL
Carbon Monoxide	CO	0.00 %	10.9 %
Carbon Dioxide	CO ₂	21.60 %	N/A
Hydrogen	H_2	54.00 % ‡	4.0 %
Oxygen	O_2	0.00 %	N/A
Methane	CH ₄	6.10 % [‡]	4.4 %
Ethylene	C_2H_4	3.46 % [‡]	2.4 %
Ethane	C_2H_6	1.13 %	2.4 %
Propylene	C_3H_6	1.51 %	1.8 %
Propane	C ₃ H ₈	0.59 %	1.7 %
Propadiene	C_3H_4	0.00 %	1.9 %
N – Butane *	C ₄ (Total)	1.67 %	-
N – Pentane **	C ₅ (Total)	0.22 %	-
Hexane	C_6H_{14}	0.05 %	1.0 %
Dimethyl Carbonate (DMC)	$C_3H_6O_3$	3.35 %	Not specified
Ethyl Methyl Carbonate (EMC)	$C_4H_8O_3$	6.32 %	Not specified
Total	-	100 %	-
* Individual C4 Components		-	-
Butane	C ₄ H ₁₀	0.38 %	1.4 %
Butene	C_4H_8	0.97 %	1.5 %
Butadiene	C_4H_6	0.27 %	1.4 %
** Individual C5 Components		-	-
Pentane	n-C ₅ H ₁₂	0.16 %	1.1 %

Summary

- The results from a single cell are not sufficient to elucidate the response of a module or a battery. The configuration of the module and battery including the heat conduction and dissipation paths determine the results of the thermal runaway.
- Complete propagation of TR was observed through all cells in the NMC modules and battery with fire in both cases.
- For the LFP modules and batteries, TR propagation was also observed without fire.
- Cathode chemistry has a large influence in the thermal response of the cell. The batteries with the cathode NMC developed a higher temperature than the LFP batteries.
- The effect of the sample size (single cell, module, battery) was reflected as an increase in the
 amount of gases released proportional to that produced by a single cell. The maximum
 temperature increased with increasing number of cells.
- Data obtained on the gases evolved should be analyzed for the volume of the chamber (room) or confined space that the battery system is located in, to understand worst case flammability and explosive as well as toxicity levels and help with the design of appropriate vent systems.

Acknowledgments

Fire R&D (UL Northbrook)
 Dr. Pravinray Gandhi, Alex Klieger and team

UL Electrochemical Safety Team

Dr. Judy Jeevarajan

Saad Azam (currently a graduate student at Dalhousie University)

Thank you!

Contact: NFP.BatterySafety@ul.org

THANK YOU