Extreme Fast Charging — Status and Implications

Tanvir Tanim, Eric Dufek, Michael Evans, Ryan Jackman, Matt Shirk, and Boryann Liaw Energy Storage and Advanced Vehicles Idaho National Laboratory Idaho Falls, ID 83415

Boryann.liaw@inl.gov

Idaho National

Laboratory

Energy Storage and Advanced Vehicles at INL

Idaho National Laboratory

GAP IN TECHNOLOGY

Integrated approach to address RISK, beyond COST

Liaw et al. Safety of Lithium Batteries, J. Garche and K. Brandt, eds. Chapter 8A.1, pp. 269–302. Elsevier, 2018.

GAP IN TECHNOLOGY

 Needs for system-based, integrated failure analysis (FA) + failure mode and effect analysis (FMEA) + diagnostic & prognostic tools

TECHNOLOGY OVERVIEW

Holistic approach on entire supply chain

INL's Niche & Focus

Battery/Cell Failure Mode and

STATUS OF TECHNOLOGY

Extreme Fast Charging (XFC)

- Critical to support electrification in mobility, energy storage, and transportation
- Stress on charging infrastructure: distribution reliability and resilience
- Issues with scalability and affordability
- Impacts on power electronics and battery performance

Impacts on battery performance

Subjects of Interest

- Stress factors from XFC
- Sensitivity to charging algorithms / protocols
 - Focus on identifying factors that limit XFC and dynamics in ion transport issues
- Aging effects on
 - Cell balance
 - Kinetics / ion transport

Detecting Li plating and its impacts

Rate Capability Testing

- Rate capability by CC-CV charging protocols
- Charge return versus rate
- A 15-min rest to study components of overvoltage

Rate Capability Testing

- Overvoltage due to *IR* (spontaneous relaxation) and ion transport (prolonged relaxation)
- IR (= Ohmic + Rxn activation polarizations) varies linearly w/ C-rate
- Noticeable ion transport limitation arises > 7C

Charging Protocols

- Charging protocols introduce rest time or current steps to minimize ion transport limitation
- Current levels defined based on ion transport change

Gr.	Cell count	10 min charging protocol
В	4 to 6	6.8C CCCV
С	8 to 10	6.8C MS1 (2-step current)
D	11 to 13	6.8C MS2 (pulsed current)
E	14, 16 and 17	9C CCCV
F	18, 20, and 21	9C MS1 (2 step current)
G	22 to 24	9C MS2 (pulsed current)
Н	15 and 19	9C MS5 (5 step current)

Cycling Result: Cell-to-cell variability

- 400 cycles completed
- Different rates of aging in different groups
- Significant variability in some groups (best: MS1 and worst: MS2).

Cycling Result: Impedance and Transport

- Transport overpotential remains the same after 400 cycles.
- Overall *IR* (=*Ohmic*+*Rrxn*) increased significantly.

Cycling Result: Impedance and Transport

- EIS@3.8V performed at 0, 75 (RPT3), 225 (RPT6) and 400 (RPT9) cycles, 9C MS2
- Low frequency Warburg diffusion tail remains unchanged
- Slight increase in Ohmic resistance, R_{ohm}
- Visible changes in R_{ct}

Cycling Result: Impedance and Transport

- Ohmic resistance constitutes about 20% of combined R_{ohm} and R_{ct}
- Significant change in R_{ct}

Cell Balance

Cell Balance upon Cycle Aging

Ę

Cycling Result: Cell-to-cell variability

- 400 cycles completed
- Different rates of aging in different groups
- Significant variability in some groups (best: MS1 and worst: MS2)

F

G

Н

18, 20, and 21

22 to 24

15 and 19

9C MS1 (2 step current)

9C MS2 (pulsed current)

9C MS5 (5 step current)

Aging mode analysis

- EOC rest voltage remain constant
- EOD rest voltage also decreases

XCEL Round 1 Best Performing cell

No visible sign of electrode damage or Li plating

- P452-Cell#17 (9C CCCV)
- 7.84% fade after 400 cycles (lowest aged cell)

XCEL Round 1 Worst Performing cell

Localized surface change probably due to plating

Accumulation of metal like object at the edge of Anode.

- P452-Cell#22 (9C MS2)
- 32.2% fade after 400 cycles (One of the highest aged cells)
- Cell#24 had highest aging (38.7%) after 400 cycles, but failed after completing the last RPT9

Conclusion

- Extreme fast charging feasible with careful cell design & fabrication
- Aging mode analysis shows
 - Both loss of cathode (LAM_{dePE}) and Li inventory (LLI) were observed
 - Significant change in cell balance could be critical
 - Localized Li plating is problematic
 - Cell variability is pronounced challenge for BMS