ESTIMATION OF SOC OF LIFEPO₄ Cells Using a Reduced Order Model with Extended Kalman Filter

Presenter: Yalan Bi Author: Yalan Bi and Song-Yul Choe Department of Mechanical Engineering, Auburn University, Auburn, AL 36849

Outline

Background

- SOC estimation and application
- Need for a reduced order model

Modeling of LFP cells and order reduction

- Modeling of LFP cells
- Order reduction
- Validation of the ROM

Design of EKF

- Principle of EKF
- Results of the ROM with EKF

Summary

SOC estimation and application

Need of a reduced order model

Estimation method	Open loop SOC estimation	Closed loop SOC estimation with ECM	Closed loop SOC estimation with ROM
Pros	• Minimum requirement of CPU	 Simple model structure Can track SOC even if the initial condition is unknown 	 ✓ Accurately model the voltage plateau and path dependency ✓ Can track SOC even if the initial condition is unknown
Cons	• Inaccurate estimation if initial SOC is unknown	 Circuit components cannot reflect the physical states Inaccurate modeling for voltage plateau, phase transition and path dependency 	Complex modeling structure
OCV characteristic of a LFP cell		Two phase transition	Path dependency
3.4 3.4 3.3 3.2 multiple stairs with sections of flat region 3.1 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.1 3.2 3.1 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1		i ₄ FePO ₄ FePO ₄ tu ² rePO ₄ tu ² r	3.6 2.8 2.4
2.9 2.9 2.8 0 0.2 0.2 0.2		LineFPO, tineFPO,	$= \frac{2.4}{2} \underbrace{\begin{array}{c} 2.4 \\ 2 \\ 10 \end{array}}_{\text{Capcity (Ah)}} \underbrace{\begin{array}{c} \text{LiFePO}_{3} \\ 12 \\ 14 \end{array}}_{\text{Capcity (Ah)}} \underbrace{\begin{array}{c} \text{LiFePO}_{3} \\ 2 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 22 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$

Modeling of LFP cells – Two phase transition

Modeling of LFP cells - Path dependency

6

Order reduction

	Full order model (FOM)	Reduction technique	Reduced order model (ROM)
Ion concentration in electrode	$\frac{\partial c_s}{\partial t} = \frac{D_{s,\beta}}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c_s}{\partial r} \right); D_{s,\beta} \frac{\partial c_s}{\partial r} \Big _{r=r_1} = 0$ $\frac{\partial c_s}{\partial t} = \frac{D_{s,\alpha}}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c_s}{\partial r} \right); D_{s,\alpha} \frac{\partial c_s}{\partial r} \Big _{r=R_s} = \frac{-j^{Li}}{a_s F}$ $\left(c_{s,\alpha\beta} - c_{s,\beta\alpha} \right) \frac{dr_{\theta}}{dt} = D_{s,\beta} \frac{\partial c_{s,\beta}}{\partial r} \Big _{r=r_{\theta}} - D_{s,\alpha} \frac{\partial c_{s,\alpha}}{\partial r} \Big _{r=r_{\theta}}$	Polynomial approach	$\begin{aligned} \frac{d}{dt}c_{s,ave} - 3\frac{D_s}{r_0^2} \Big(35(c_{s,surf} - c_{s,ave}) - 8q_{ave}r_0 \Big) &= 0 \\ (c_{s,\beta\alpha} - c_{s,\alpha\beta}) \frac{dr_0}{dt} &= -D_{s,\beta} \frac{(c_{s,surf} - c_{s,\beta\alpha})k_2 - (c_{s,surf} - c_{s,\beta\alpha})k_4}{k_2k_3 - k_1k_4} \\ &+ \frac{D_s}{r_0} \Big(35(c_{s,surf} - c_{s,ave}) - 8q_{ave}r_0 \Big) \end{aligned}$
Ion concentration in electrolyte	$\frac{\partial(\varepsilon_{\rm e}c_{\rm e})}{\partial t} = \frac{\partial}{\partial x} \left(D_{\rm e}^{\rm eff} \frac{\partial}{\partial x} c_{\rm e} \right) + \frac{1 - t_{+}^{0}}{F} j^{\rm Li}$ $\frac{\partial c_{\rm e}}{\partial t} \Big _{x=0} = \frac{\partial c_{\rm e}}{\partial t} \Big _{x=L} = 0$	Residual grouping	$\dot{c}_{e} = \hat{A} \cdot c_{e} + \hat{B} \cdot I$ $y = \hat{C} \cdot c_{e} + \hat{D} \cdot I$
Ohm's law in electrolyte	$\frac{\partial}{\partial x} \left(\kappa^{\text{eff}} \frac{\partial}{\partial x} \phi_{\text{e}} \right) + \frac{\partial}{\partial x} \left(\kappa_{\text{D}}^{\text{eff}} \frac{\partial}{\partial x} \ln c_{\text{e}} \right) + j^{\text{Li}} = 0$ $\frac{\partial \phi_{\text{e}}}{\partial x} \bigg _{x=0} = \frac{\partial \phi_{\text{e}}}{\partial x} \bigg _{x=L} = 0$	$\begin{aligned} \mathbf{C}_{e} \text{ has no influence} \\ \text{on reaction current} \\ \frac{\partial}{\partial x} \left(\kappa_{D}^{eff} \frac{\partial \ln c_{e}}{\partial x} \right) = 0 \end{aligned}$	$\frac{\partial}{\partial x} \left(\kappa^{eff} \frac{\partial \phi_e}{\partial x} \right) + j^{Li} = 0$
Electrochemical kinetics	$j^{Li} = a_s i_\theta \left\{ \exp\left[\frac{\alpha_a F}{RT}\eta\right] - \exp\left[-\frac{\alpha_e F}{RT}\eta\right] \right\}$ $\eta = \phi_s - \phi_e - U$	Linearization	$\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \phi_{se} \right) = j^{Li} \left(\frac{1}{\sigma^{eff}} + \frac{1}{\kappa^{eff}} \right)$ $j^{Li} = \frac{a_s i_0 F}{RT} \left(\phi_{se} - U \right)$

APF

Validation of ROM

Test condition: Profile: CC charge Temperature: 25°C Current: 1C,2C, 4C Initial SOC: 0%

Test condition: Profile: CC discharge Temperature: 25°C Current: 1C,2C, 4C Initial SOC: 100%

Principle of EKF

Flowchart of SOC Estimation Process

Result of ROM with EKF

APF

Validation of ROM + EKF (with initial error and temperature dependency)

- ✤ Test condition: 2C-rate CC discharge at 25°C.
- \diamond 20% initial SOC error (0.2V terminal voltage error) is assumed.
- \clubsuit The initial error can be corrected with EKF.

Summery

Summary

- Development of ROM for LiFePO₄ cells considering two phase transition and path dependency.
- > Development of **combined EKF algorithm** for SOC estimation.
- Comparison of simulation results of combined algorithm and tradition
 EKF and their analysis under different operation conditions.

Conclusion

> The combined algorithm shows a better SOC estimation result.

□ Future work

- ➢ Incorporation of thermal model.
- Validation of **drive cycle** profiles

Thanks for your attention!

