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GUIDELINES FOR PPR

• Reduce risk of cell can side wall breaches 
• Without structural support most high energy density (>660 Wh/L) designs are very likely to 

experience side wall breaching during TR  
• Battery should minimize constrictions on cell TR pressure relief 

• Provide adequate cell spacing and heat rejection 
• Direct contact between cells nearly assures propagation 
• Spacing required is inversely proportional to effectiveness of heat dissipation path 

• Individually fuse parallel cells 
• TR cell becomes an external short to adjacent parallel cells and heats them up 

• Protect the adjacent cells from the hot TR cell ejecta (solids, liquids, and gases)
• TR ejecta is electrically conductive and can cause circulating currents 

• Prevent flames and sparks from exiting the battery enclosure 
• Provide tortuous path for the TR ejecta before hitting battery vent ports equipped flame arresting 

screens
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Source: NASA NESC Task Report TI-14-00942 “Assessment of ISS/EVA Lithium-ion Battery TR Severity Reduction Measures” 

May 2017



FUSES

• High electrical conductivity under normal operation to enable efficient 
charge transfer (e.g., Ni, Cu busplate materials)

• Individually isolate parallel cells during fault or thermal runaway 
events

• Limit fault current and secondary heating, reducing the likelihood of 
thermal propagation to adjacent cells

• Support pack-level TR mitigation, protecting neighboring cells from 
electrically driven heating during side-wall breach or ejecta exposure

• Intentional electrical weak points designed to open (melt) under 
excessive current and associated heating



DIFFERENT KINDS OF FUSES/LINKS

J. J. Darst, J. C. Thomas, D. P. Finegan, and E. Darcy, “Guidelines for 

Safe, High Performing Li-Ion Battery Designs for Manned Vehicles,” 

presented at the Power Sources Conference, Denver, CO, USA, Jun. 

11–14, 2018, NASA Johnson Space Center, Houston, TX, USA, Tech. 

Rep. JSC-E-DAA-TN56375, NTRS Document ID: 20180003971

E. Darcy, “Thermal Runaway Severity Reduction 

Assessment for EVA Li-ion Batteries,” presented at 

the NASA Aerospace Battery Workshop, Huntsville, 

AL, USA, Nov. 18–20, 2014,

Source: E. Darcy et al. “Safe, High Power / Voltage 

Battery Design Challenges,” presented at the NASA 

Aerospace Battery Workshop, Huntsville, AL, USA, 

Nov. 19, 2019.

A. Sharma, P. Zanotti, L.P. Musunur, Enabling the electric future of 

mobility: robotic automation for electric vehicle, IEEE Access 7 (2019) 

170961–170991



INDIVIDUALLY FUSE PARALLEL CELLS (EARLY) 

5

Source: Chuck Haynes, NASA JSC EP&ES, Darcy, Tran, Hagen, Ortiz-

Sanchez, Bohot, Walker, NASA Alternative Orion Small Cell Battery 

Design Support, NASA Battery Workshop, November 18, 2016



CAN WE PUT MORE COUPLED-PHYSICS INTO 
OPTIMIZING BUSPLATES?



M3 DESIGN (STUDY CASE)

D. Petrushenko, P. Coman, J. Trillo, J. Darst, R. E. White, E. Darcy - M3 PPR Battery 

Development, NASA Aerospace Battery Workshop, 2022



PPR? YES! 

2D

2D Simulations vs Experiments

2D



Check: P. Coman, D. Petrushenko, E. Darcy, R. E. White, 
Electrical-thermal modeling and electrical design optimization of 
fuses in a nickel bus-plate for a Li-ion battery pack, Journal of 

Energy Storage, 86 (2024) 111226



3D GEOMETRY (WITH M35A CELLS)
Assumptions:

- Lumped electrochemical 

model for each cell

- No contact resistance

- No f(T) parameters for cells

Conditions:

- 1C Discharge then relax

- Convection only
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WHY DO ALL THIS?

• Thermal gradients increased degradation rate by ~5.2% compared to isothermal conditions1.

• Usable pack energy decreased by up to ~6% due to cell non-uniformity driven by temperature and 
impedance differences, especially at higher C-rates2.

• Cells exposed to 20-45 °C gradients exhibited accelerated lifetime degradation, despite similar 
short-term capacity, due to non-uniform current distribution3.

• A 20% cell resistance mismatch (often thermally induced) can reduce cycle life by ~40%, 
demonstrating the strong coupling between thermal gradients, resistance growth, and aging4

• Cell-to-cell temperature differences promote capacity imbalance and localized overcharge, 
increasing degradation rate and raising safety risk during cycling and abuse conditions5.
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1 Ashwin, T. R., McGordon, A., Jennings, P. A., Electrochemical modelling of Li-ion battery pack with constant voltage cycling, Journal of Power Sources, 341 (2017) 327–339.

2 Offer, G. J., Yufit, V., Howey, D. A., Wu, B., Brandon, N. P., Module design and fault diagnosis in electric vehicle batteries, Journal of Power Sources, 206 (2012) 383–392.

3 Liu, X., Ai, W., Marlow, M. N., Patel, Y., Wu, B., The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs, Applied 

Energy, 248 (2019) 489–499.

4 Chiu, K.-C., Lin, C.-H., Yeh, S.-F., et al., Cycle life analysis of series connected lithium-ion batteries with temperature difference, Journal of Power Sources, 263 (2014) 75–84.

5 Wang, L., Cheng, Y., Zhao, X., A LiFePO₄ battery pack capacity estimation approach considering in-parallel cell safety, Applied Energy, 142 (2015) 293–302.



CURRENT DISTRIBUTION THANKS TO 3D
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Unclocked Design



SOC AND VOLTAGES?
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CLOCKING THE CELLS 
Var A: Unclocked Var D: Clocked
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VOLTAGES
Unclocked Clocked
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CAN WE ACTUALLY DO MORE? MAYBE…

?

16



SOC
Unclocked Optimized

?
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TEMPERATURES – MID-SECTION
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Influence coming from 

Busplate?



TEMPERATURES – POSITIVE BUSPLATE
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TEMPERATURES – NEGATIVE BUSPLATE
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TEMPERATURES – NEGATIVE FUSIBLE LINKS

Previous experiments
P. Coman, D. Petrushenko, E. Darcy, R. E. White, Electrical-thermal 

modeling and electrical design optimization of fuses in a nickel bus-

plate for a Li-ion battery pack, Journal of Energy Storage, 86 (2024) 

111226
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WHAT ABOUT THERMAL RUNAWAY?



SUBSCALING (BOTTOM LEFT) UNCLOCKED
Full Scale Slice
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SUBSCALING TEMPERATURE
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SHORT CIRCUIT IN CELLS (ACTIVATION AT 60°C)

Things to consider:

1. 1[S] short after QTR(t)

2. The TC does not “die”, but 

continue to function (very 

hard to “cancel” a cell)
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SUBSCALE CURRENTS (CELL 1S SHORT)
Unclocked Clocked
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Work in progress



TEMPERATURES – MID-SECTION
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WRAPPING UP

• 2D simulations of busplates have shown that clocking tabs can 
reduce voltage loss and temperature when current applied

• Experiments vs. Simulation for 2D match

• 3D simulations have shown the same trend during CC discharge and 
CR

• Optimized clocking can reduce current distribution even more

• 3D simulations also shown that the heat transfer from busplates also 
influence and dictate the gradient inside the pack

• Preliminary TR model show that not a big difference during a soft 
short in a trigger cell (more to come in the future)
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