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GUIDELINES FOR PPR

» Reduce risk of cell can side wall breaches

« Without structural support most high energy density (>660 Wh/L) designs are very likely to
experience side wall breaching during TR

» Battery should minimize constrictions on cell TR pressure relief

 Provide adequate cell spacing and heat rejection
 Direct contact between cells nearly assures propagation
« Spacing required is inversely proportional to effectiveness of heat dissipation path

=P « Individually fuse parallel cells
* TR cell becomes an external short to adjacent parallel cells and heats them up

* Protect the adjacent cells from the hot TR cell ejecta (solids, liquids, and gases)
* TR ejecta is electrically conductive and can cause circulating currents

* Prevent flames and sparks from exiting the battery enclosure

* Provide tortuous path for the TR ejecta before hitting battery vent ports equipped flame arresting
screens

Source: NASA NESC Task Report TI-14-00942 “Assessment of ISS/EVA Lithium-ion Battery TR Severity Reduction Measures”
May 2017

2
UNIVERSITY OF SOUTH CAROLINA




* High electrical conductivity under normal operation to enable efficient
charge transfer (e.g., Ni, Cu busplate materials)

* Individually isolate parallel cells during fault or thermal runaway
events

 Limit fault current and secondary heating, reducing the likelihood of
thermal propagation to adjacent cells

« Support pack-level TR mitigation, protecting neighboring cells from
electrically driven heating during side-wall breach or ejecta exposure

* Intentional electrical weak points designed to open (melt) under
excessive current and associated heating
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DIFFERENT KINDS OF FUSES/LINKS

J. J. Darst, J. C. Thomas, D. P. Finegan, and E. Darcy, “Guidelines for

Safe, High Performing Li-lon Battery Designs for Manned Vehicles,”

presented at the Power Sources Conference, Denver, CO, USA, Jun. Assessment for EVA Li-ion Batteries,” presented at
11-14, 2018, NASA Johnson Space Center, Houston, TX, USA, Tech.

the NASA Aerospace Battery Workshop, Huntsville,
Rep. JSC-E-DAA-TN56375, NTRS Document ID: 20180003971 AL USA. Nov. 18-20. 2014
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Aerospace Battery Workshop, Huntsville, AL, USA, = . - - s ‘\ Bus plates
Nov. 19, 2019.

A. Sharma, P. Zanotti, L.P. Musunur, Enabling the electric future of

mobility: robotic automation for electric vehicle, IEEE Access 7 (2019) Y Molinaroli College Of
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INDIVIDUALLY FUSE PARALLEL GELLS (EARLY]

NEGATIVE BUS
TERMINATION

BUS PLATE ROUTING

POSITIVE BUS
TERMINATION

Source: Chuck Haynes, NASA JSC EP&ES, Darcy, Tran, Hagen, Ortiz-

Sanchez, Bohot, Walker, NASA Alternative Orion Small Cell Battery

Design Support, NASA Battery Workshop, November 18, 2016
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CAN WE PUT MORE COUPLED-PHYSICS INTO

OPTIMIZING BUSPLATES?
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M3 DESIGN (STUDY GASE)

Epoxy adhesive is applied
onto the cell followed by
axial insertion into the heat
sink (134 cells per virtual cell).

Cell weld
tab

Assembly Cell fuses etched into
bus plate
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D. Petrushenko, P. Coman, J. Trillo, J. Darst, R. E. White, E. Darcy - M3 PPR Battery - Enginee]_‘ing and Computing
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PPR? YES!

2D Simulations vs Experiments
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Check: P. Coman, D. Petrushenko, E. Darcy, R. E. White,

Electrical-thermal modeling and electrical design optimization of
fuses In a nickel bus-plate for a Li-ion battery pack, Journal of
Energy Storage, 86 (2024) 111226
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Convection only

1meey

Assumptions:

- Lumped electrochemical
model for each cell

- No contact resistance

- No f(T) parameters for cells

Conditions:
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WHY DO ALL THIS?

Thermal gradients increased degradation rate by ~5.2% compared to isothermal conditions?.

Usable pack energy decreased by up to ~6% due to cell non-uniformity driven by temperature and
impedance differences, especially at higher C-rates?.

Cells exposed to 20-45 °C gradients exhibited accelerated lifetime degradation, despite similar
short-term capacity, due to non-uniform current distribution3.

A 20% cell resistance mismatch (often thermally induced) can reduce cycle life by ~40%,
demonstrating the strong coupling between thermal gradients, resistance growth, and aging*

Cell-to-cell temperature differences promote capacity imbalance and localized overcharge,
increasing degradation rate and raising safety risk during cycling and abuse conditions®.

1 Ashwin, T. R., McGordon, A., Jennings, P. A., Electrochemical modelling of Li-ion battery pack with constant voltage cycling, Journal of Power Sources, 341 (2017) 327-339.

2 Offer, G. J., Yufit, V., Howey, D. A., Wu, B., Brandon, N. P., Module design and fault diagnosis in electric vehicle batteries, Journal of Power Sources, 206 (2012) 383—392.

3 Liu, X., Ai, W., Marlow, M. N., Patel, Y., Wu, B., The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs, Applied
Energy, 248 (2019) 489-499.

4 Chiu, K.-C., Lin, C.-H., Yeh, S.-F., et al., Cycle life analysis of series connected lithium-ion batteries with temperature difference, Journal of Power Sources, 263 (2014) 75-84.
5Wang, L., Cheng, Y., Zhao, X., A LiFePO, battery pack capacity estimation approach considering in-parallel cell safety, Applied Energy, 142 (2015) 293-302.

A Molinaroli College of

Wl Engineering and Computing
UNIVERSITY OF SOUTH CAROLINA




GCURRENT DISTRIBUTION THANKS T0 3D
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30C AND VOLTAGES?
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CLOCKING THE CELLS

Var A: Unclocked Var D: Clocked
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VOLTAGES
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GAN WE ACTUALLY DO MORE= MAYBE...
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TEMPERATURES — MID-SECTIO
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TEMPERATURES - POSITIVE BUSPLATE
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TEMPERATURES — NEGATIVE BUSPLATE
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TEMPERATURES — NEGATIVE FUSIBLE LINKS
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Previous experiments

P. Coman, D. Petrushenko, E. Darcy, R. E. White, Electrical-thermal
modeling and electrical design optimization of fuses in a nickel bus-
plate for a Li-ion battery pack, Journal of Energy Storage, 86 (2024)
111226
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WHAT ABOUT THERMAL RUNAWAY2
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SUBSCALING (BOTTOM LEFT) UNGLOCKED
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SUBSCGALING TEMPERATURE
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SHORT GIRCUIT IN GELLS (ACTIVATION AT 60°C)

Things to consider:

1. 1[S] short after Q;x(t)

2. The TC does not “die”, but
continue to function (very
hard to “cancel” a cell)
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SUBSGALE CURRENTS (GELL 15 SHORT)
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TEMPERATURES — MID-SECTION
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* 2D simulations of busplates have shown that clocking tabs can
reduce voltage loss and temperature when current applied

« Experiments vs. Simulation for 2D match
« 3D simulations have shown the same trend during CC discharge and

CR

* Optimized clocking can reduce current distribution even more

« 3D simulations also shown that the heat transfer from busplates also
Influence and dictate the gradient inside the pack

* Preliminary TR model show that not a big difference during a soft
short in a trigger cell (more to come in the future)
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