

Advanced Solutions Group 4880 Venture Drive, Suite 100 Ann Arbor, MI 48108

Development of Lithium Sulfur Batteries for High Energy Applications

Hong Wang, James Dong, Kevin Schelkun, Shay Penski, Chris Silkowski, Michael Wixom, Les Alexander

> 2020 NASA Aerospace Battery Workshop Nov. 19, 2020

Navitas Systems

A cell and battery design and manufacturing company Research, design, development, and manufacture of advanced lithium cells and energy storage products and systems for both commercial customers and U.S. Government/military customers

Formed in 2011 with the merger of MicroSun Innovative Energy Storage Solutions and MicroSun Electronics, and the acquisition of A123 Systems' Government Solutions Group, located in Ann Arbor, Michigan.

In 2019, East Penn Manufacturing– one of the world's leading battery manufacturers—acquired majority interest in Navitas Systems.

48,000 square foot R&D, Engineering, & Manufacturing Center. 100,000 square foot lithium battery pack Manufacturing Center.

Navitas' \$15M state of the art automated production facility with the capability of producing up to 1M+ custom format pouch cells per year with 1 – 10 Ah capacity

Navitas Systems Advanced Solution Group

	Lithium Battery Solutions	System Design and Assembly	Electronics & Battery Management Systems (BMS)	Custom Cell Development	Analytical and Testing	Cell Chemistry R&D Advanced Chemistry and processing
Capability				a straiting		
Scope	 Custom battery development, prototyping, and manufacturing 12V NATO 6T Battery 24V NATO 6T Battery Multi-kWh motive application batteries PowerForce™ Idle Reduction Battery Frontierion™ Photovoltaic Interface Energy Storage Mission-critical UPS Systems 	 Cell form factor and chemistry agnostic >1kWh solutions System mechanical and electrical design Custom power electronics Finite element analysis Thermal modeling Prototype and low- volume assembly in house 	 Custom PCBA and wiring harness design and assembly In-house SMT line Customized configurable software Box builds 	 Custom prismatic cells 2x2 to 12x22 cm form factors In house slot-die coating 650 sq. ft. dry room Various Li-ion chemistries developed Extreme high power and high energy density chemistries available; 100-600 Wh/L 	 500+ MACCOR test channels Environmental control -70 to +200°C Electrochemical Impedance Spectro- scopy Scanning Electron Microscope with elemental mapping and inert gas sample transfer device Analytical chemistry instrumentation Cell tear down analysis 	 Wet lab Controlled atmosphere tube furnaces for synthesis Custom anode, cathode, and electrolyte development Battery materials and concepts evaluation Advanced Chemical processing

Theoretical capacity of sulfur electrode: 1675 mAh/g

Key Limitations: Low utilization of sulfur and fast capacity fading

4 Key components: Cathode, anode, electrolyte, separator

Navitas is currently working on cathode and separator.

[Wikipedia]

Discharge:

Li+ions are stripped from the anode, *Lithium Polysulfides* (Li₂S_x) are formed in the cathode. **Recharge**:

Li+ ions are plated back onto the anode as the $\text{Li}_2S_{\text{\tiny X}}$ moves towards $S_8.$

- Li S cathode work
- Bifunctional separator for LSB
- Li S stack development
- Navitas LSB road map and challenges
- Acknowledgements

Goal and Objectives

28V 30 Ah Li-S battery based on novel cathode chemistry and Navitas BMS

- \circ Scale up cathode to 500 g per batch
- o Build 3 Ah cells
- Demonstrate>300Wh/kg and >100 cycles
- Develop BMS for Li S battery
- Design 28 V, 30 Ah battery

Challenges for Li-S cathodes

- $\,\circ\,$ Low utilization of sulfur and fast capacity fading
 - Dissolution of polysulfides in electrolytes
 - Large volumetric changes of sulfur
 - \circ Poor electronic conductivity of sulfur

Innovative Navitas cathode

<u>Porous</u>, <u>conductive</u> ceramic host with <u>high</u> <u>affinity</u> to sulfur and polysulfides

Key features and Benefits of Navitas cathode

- Intrinsically conductive cathode powder for high rate capability
- \circ Porous for improved sulfur loading capacity
- High sulfur affinity for extended cycle life
- Compatible with established high volume electrode coating and cell assembly operations

The Navitas cathode is patent pending

Key Properties of Ceramic Host

	Target	Results
Microstructure	Phase pure crystalline	Phase pure crystalline
Surface area	>100 m ² /g	108 m ² /g
Porosity	> 50%	50%

- Challenge: Maintain porous structure/high surface area after thermal treatment
- Key accomplishment Precursor modification mitigates pore collapse during thermal treatment

As-received precursor

Modified precursor

Navitas ceramic host

- Properties of ceramic host:
 - XRD: Targeted microstructure at high purity §
 - SEM: nano particles & porous structure
 - N₂ adsorption: Mesoporous

SEM image of Ceramic Host

Isotherm of Ceramic Host

XRD patterns

Sealed vials of Li₂S₈ solution, and after contact with ceramic and mesoporous carbon overnight

Rate capability advantage of Navitas cathode:

- Loading of electrodes: 0.6mAh/cm² (Left) and 1.5 mAh/cm² (Right)
- High rate (>2C): 2X better than porous carbon baseline
- Rate performance demonstrated at practical electrode loading and energy

- Design concept:
 - Control structure of host to further improve the affinity to sulfur
- Advantage of host with new-designed structure in terms of capacity retention:
 - 100 cycles: 82% new vs. 65% old

Cathode: Materials Scale Up

- Objective:
 - − 200 g/batch \rightarrow 500 g/batch \rightarrow 1,000g/batch cathode with specific capacity of 1,000 mAh/g
- Current Status:
 - 500 g/batch achieved

- Melt-diffusion approach for impregnation of sulfur:
 - Visual inspection: black-colored Navitas cathode material (\rightarrow encapsulation of S in pores)
 - TGA: ≥ 70 wt.% sulfur in Navitas porous cathode material

High loading cathodes (hand casting)

4mAh/cm² and 6mAh/cm² cathode were demonstrated with hand casting electrode

>300Wh/kg goal possible with these high loading cathodes

Cathode: Pilot Scale Coating

 \geq Pilot coating double side S cathodes (\geq 7mg/cm² S each side achieved)

Coater die head

Coater output

- > Two challenges addressed:
- (1) A stable cathode powder slurry was prepared at large scale with uniform dispersion of the constituents without loss of retention of sulfur
- (2) The coating operation was performed without volatilizing the sulfur in the electrode drying.

Extended Life High Energy Space Battery with Bifunctional Separator

Conductive & porous

Goal and Objectives

	Li anode S cathode membrane coated separator			
 Demonstrate a bifunctional membrane separator for a cost effective, high charge efficiency and long cycle life LSB: Develop a conductive membrane precursor powder with engineered pore structure Produce >50m ceramic coated bifunctional membrane with roll to roll (R2R) coating Demonstrate 2Ah prototype Li-S bifunctional separator cells with 400 Wh/kg and 200% improvement in cycle life 	 Is with conventional separator Conductive ceramic powder with engineered pores Scalable slurry casting method to coat the separator Entrap dissolved polysulfides by its high affinity Reuse the trapped sulfides through its conductive path (delithitation) 			
Key features and Benefits of Navitas	Application/Market			
<u>separator</u>	 Energy storage solutions for surface missions on moon and Mars - Energy storage systems for 			
 Porous ceramic host with high affinity to sulfur and polysulfides 	 > landers > construction equipment > crew rovers > science platforms. 			
 Intrinsically conductive ceramic powder enables reusing of trapped sulfides 				
 Machine coating scalable 				

Approach:

SEM images of coating

Cross Section

• 10 µm thickness

Dispersion

Homogeneous

10µm thick uniform ceramic coating was achieved

Cycle life improvement from the new separator

End Point of Cycling	Cell w/ Baseline Separator	Cell w/ Bifunctional Separator	Cycle Life Improvement	Target
600mAh/g	17	53	3.1 X	
500mAh/g	67	165	2.5 X	2 X
400mAh/g	112	345	3.1 X	

SLP Cell Demonstration

- Cycling efficiency improvement from coated separator observed
- 80% capacity retention at 1C demonstrated

Separator: Material Scale Up

50m R2R machine coated bifunctional separator

R2R processed separator allows Navitas to perform extensive cell performance test with variable cell format.

Separator: 700mAh MLP Stack Demonstration

Multilayer (700mAh) stack with baseline and coated separator

Cathode: 2.5mg/cm² S. E/S ~5, 1.5-2.8V, ambient temperature

Coated separator demonstrated higher capacity at various rates

Multilayer (2Ah) stack with baseline and coated separator

- Cathode: 6 mg/cm² S. E/S ~5, 1.5-2.6V, ambient temperature, Initial 10 cycles at low C/30 rate
- Coated separator demonstrated higher initial capacity

Separator: 2Ah MLP Stack Demonstration

Multilayer (2Ah) stack with baseline and coated separator

Cathode: 6 mg/cm² S. E/S ~5, 1.5-2.6V, ambient temperature, Coated separator demonstrated higher capacity at various rates

Multilayer stack with different capacities

- Pilot coated S cathodes of various loadings (2.5 \rightarrow 6 to 9 mg/cm² S)
- Li/Cu → pure Li foil

- 700mAh cell:
 2.5mg/cm² S, Li/Cu anode, C/10
- 2Ah cell: 6mg/cm²
 cathode, pure Li
 anode, C/30
- E/S ratio ~5, ambient temperature

LSB 2Ah cell Safety demonstration

2Ah Li S cell (left)and 2Ah Li ion cell (right) nail penetration tests

Along with the development of ceramic based cathode and bifunctional separator, Navitas is working towards the commercialization of high energy LSB.

Navitas welcomes further collaborations from university, national lab, and industry partners to advance LSB technology.

Navitas Systems Proprietary

- Scaling up the cathode material and fabricate Li-S 28V, 30Ah battery in aviation platform with BMS (Navy SBIR Phase II)
- Optimizing and scaling up bifunctional separator for LSB (NASA SBIR Phase II)
- Extended Cycle Life High Energy Lithium Sulfur Batteries (NASA SBIR Phase I, completed)
- Further developing R2R bifunctional separator and test LSB with AIAA protocols required for space qualification (USAF & NASA, application pending)
- Adopting solid state electrolyte (Army SBIR Phase II, with a university partner)
- Conducting Li metal anode protection (DOE Battery 500 Phase II, with DOE lab)

Navitas LSB targeting 10X VRLA and 1.5X conventional LIB specific energy

NAVAIR 28V, 30Ah Battery in F/A-35 platform

Batteries for soldier / airman portable powder and UAV applications

NASA space suits, landers, rovers, science platforms, solar arrays

The LSB cathode work was supported by

- US Navy SBIR program (Phase I) under the contract # N68335-16-C0017
- US Navy SBIR program (Phase II) under the contract # N68335-17-C0017
- US NASA SBIR program (Phase I) under contract # 80NSSC19C0284.
- Navitas special thanks to Drs. Venkat Manivannan, Adam Jolley, Michael Melnyk from NAVAIR and Lisa Kohout from NASA for support and technical guidance

The separator work was supported by

- US NASA SBIR program (Phase I) under the contract # NNX17CC64P
- ✤ US NASA SBIR program (Phase II) under the contract # 80NSSC18C0099.
- Navitas special thanks to Dr. James Wu for support and technical guidance

