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Thermal Runaway
• Thermal runaway is a self feeding 

process that can lead to combustion 
of the batteries.

• Better cooling methods and testing 
at the extremes will help mitigate 
this risk.

• A battery emulator is proposed to be 
a helpful tool for developing better 
cooling methods at the extremes of 
battery use.
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Tesla car in Oslo 2016 [1]

Tesla Megapack in Australia 2021 [2]

[1] Mauger, Alain & Julien, Christian. (2017). Critical review on lithium-ion batteries: are they safe? Sustainable?. 
Ionics. 23. 10.1007/s11581-017-2177-8.
[2] Ben. “Why Thermal Runaway Is the Real Killer in Battery Fires.” Zenaji, 31 Jan. 2022, 
https://zenaji.com/why-thermal-runaway-is-the-real-killer-in-battery-fires/. 
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Emulator Applications

• Will be able to work on any system 
that a physical battery can attach 
too.

• Being developed to work with digital 
twin test bed for naval propulsion at 
University of South Carolina.

• Looking to be used in ground 
testing/ digital twins of electric 
aircrafts.
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[3]“Solutions - Naval Electric Power & Propulsion.” GE Power Conversion, 
https://www.gepowerconversion.com/product-solutions/Naval-Electric-Power-Propulsion.
[4] “Knowledge.” Ground Vibration Testing - Vibration Simulation | Brüel & Kjær, 
https://www.bksv.com/en/knowledge/applications/structural-dynamics/ground-vibration-test. 
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Battery Emulator
• Goal:

• Enable safe exploration of distributed energy resources under extreme 
(equipment threatening) conditions

• Emulate characteristics of large battery at all system connections -- electrical 
terminals and fluid ports -- based on actual behavior of a single cell of the 
type used in the battery

• Investigate thermal and electrical coupling effects at system level
• Real-time Operations:

• The single cell experiences V, I, and thermal stresses scaled-down from the 
system interface. The system experiences V, I and thermal stresses scaled up 
from the single cell response.

• Real-time interface between cell and system includes a fully-sensorized and 
actuated digital twin of the battery, based on Simulink models, that runs on NI 
edge computing device.
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Battery Model

• A coupled electro-thermal model 
• Parameters are dependent on each other
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Coupled Electrical Model

• Governing equation:
• 𝑉!"# 𝑡 = 𝑂𝐶𝑉(𝑆𝑜𝐶, 𝑇) − 𝑖(𝑡$)𝑅%&'(𝑆𝑜𝐶, 𝑇)
• Open Circuit Voltage (OCV) and Equivalent Series Resistance 

(ESR) values are organized into lookup tables
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• Equivalent electrical circuit:
• Simple equivalent circuit used 

initially
• Later can add more 

dynamics by replacing ESR 
with RC circuit
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Coupled Thermal Model
• An isothermal reduced order heat generation model.

Original Eq [5]:
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Implemented Eq (added natural convection and liquid cooling):
�̇� = 𝐼 𝑈!"# − 𝑉 − 𝐼𝑇
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• Equation Assumes uniform current density, uniform heat 
generation and no mass transport limitations

• Works well with low charge/discharge rates
• At low rates side reactions and mixing is negligible 
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[5] Y. Zeng, D. Chalise, S. D. Lubner, S. Kaur and R. S. Prasher, "A review of thermal physics and management inside lithium-ion 
batteries for high energy density and fast charging," Energy Storage Materials, vol. 41, pp. 264-288, 2021
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• Can scale up single cell to 
represent the larger battery packs such as a Lithos battery pack:

• 350V 36Ah, up to 10C discharge (360 Amps)

• Battery model is electrically and thermally scalable
• Electrically:

• OCV obtained by multiplied by number of cells in series
• Capacity/current obtained by multiplying by number of cells in parallel
• Terminal resistance by equivalent resistance of the parallel and series arrangement

• Thermally:
• Thermal mass of all cells and case sum together
• Convective surface area scaled to surface area of the fluid interface

• Assumptions:
• Uniform heat, SOC, and current in all cells of the battery

Scalability
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Data Gathered
• Data from a Samsung 30Q 18650
• Experiments used to find electrical 

parameters.
• Heat transfer coefficient and heat 

capacity of battery values taken from 
literature.

• dU/dT parameter found by fitting a 2nd
order polynomial to the OCVs with 
respect to the temperature range at 
each SOC step.

• Currently do not have a liquid cooled 
battery to take parameters from.
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Parameters need

Electrical 

nominal voltage

capacity (T)

open circuit voltage (SoC, T)

terminal resistance (SoC, T)

Thermal

open circuit voltage (SoC, T)

dU/dT (SoC, T)

surface area

convective heat transfer coefficient [6]

mass 
specific heat capacity [7]

Liquid cooling
(Not found yet)

pipe wall thickness

pipe length

pipe thermal conductivity

pipe cooling contact area

pipe hydraulic diameter

pipe cross-sectional area

mass flow rate of liquid

density of liquid

[6] X. Zhang et al., “Evaluation of convective heat transfer coefficient and specific heat capacity of a 
lithium-ion battery using infrared camera and lumped capacitance method,” Journal of Power Sources, 
vol. 412, pp. 552–558, Feb. 2019, doi: 10.1016/j.jpowsour.2018.11.064.

[7] J. C. Chin, S. L. Schnulo, T. B. Miller, K. Prokopius and J. Gray, "Battery 
performance modeling on maxwell x-57," AIAA Scitech 2019 Forum, 2019.
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Battery Tester
• Built in house to perform Pulsed Power 

Characterization (PPC) testing
• Composed of a load, power supply, 

incufridge, thermocouples, and a laptop with 
LabVIEW.
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Pulse Power Characterization
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• Get parameters from pulse response of battery. Equations and profile from [7]
Equations:

𝑅$ =
𝑢$ − 𝑢@

𝑖
For 2-time constant dynamics:

𝑅@ =
𝑢@ − 𝑢A

𝑖

𝑅A =
𝑢B − 𝑢A

𝑖
𝑡@ = 𝑅@𝐶@
𝑡A = 𝑅A𝐶A

[7] S. Thanagasundram, R. Arunachala, K. Löffler, T. Teutsch and A. Jossen, "A cell level model for battery 
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Pulse Power Characterization
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• Profile: 2C discharge pulse 
(10 sec), 3 min wait, 2C 
charge pulse (10 sec), 3 
min wait, discharge to next 
SoC step, rest 1 hr.

• Repeat pulse discharge/ 
charge events at every 10% 
decrement of SoC from 
100% to 20% and at every 
5% decrement from 20%-
0%

• Temperature range: 
13,20,30,40, and 48 °C

A PPC test run at 20⁰C
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Model Result (Air convection only)
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*Note, these tests recorded only the battery surface temperature.
Core temperature can be up to 10⁰C hotter than the surface.

• 0.5C discharge to 2.5V 
cutoff

• Modeled voltage with 
2.93% average absolute 
error.

• Modeled temperature with 
0.10% average absolute 
error.
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Model Result (Air convection only)
• 4.2V 0.5C CC-CV charge 

to 150mA cutoff
• Modeled voltage with 

1.10% average absolute 
error.

• Modeled temperature 
with 0.43% average 
absolute error.
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*Note, these tests recorded only the battery surface temperature.
Core temperature can be up to 10⁰C hotter than the surface.
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Model Implemented on Hardware
• Real-time controller (cRIO-9054) 

• Receives real-time data from sensors.
• Outputs real-time control signals to power supplies

• Control Scheme will be uploaded to real-time controller:
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Hardware Setup
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Diagram of complete setup: Physical Setup:
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Discussion

Jarrett Peskar
jpeskar@email.sc.edu

Department of Mechanical Engineering, UofSC
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