

Development and Evaluation of Li/CF_x Primary Batteries for Deep Space Missions

<u>E.J. Brandon</u>*, H.L. Seong, K. Billings, J. Pasalic, J.P. Ruiz, J.-P. Jones, R. Lin and E. Wood Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA

> NASA Aerospace Battery Workshop November 16, 2022

URS312612 - Approved for Unlimited Release

Europa Lander Mission Concept

1

- A mission concept to land on Europa
- Europa is an ocean world within our solar system, believed to harbor significant liquid water under an icy shell
- Mission objectives:
 - Assess habitability
 - Search for evidence of life
 - Characterize the surface to support future exploration
- "Civilization-scale science mission"

Europa Lander Mission Timeline

- 5+ year cruise time after launch to reach Jupiter Orbital Insertion (JOI)
- Europa landing two years after JOI
- 20-30 day mission

Europa Lander Primary Battery Mission

- Primary battery only mission
 - 50 kWh total energy
 - ~100 kg battery mass
 - 20-30 day mission to achieve primary science objectives
- Initial target of 500 Wh/kg battery
 - 4X battery modules
 - ~12.5 kWh each
- Estimate ~700 Wh/kg required for the cell specific energy
 - 75% allocated for cell mass
 - 25% overhead for battery packaging/structure
- Must also consider de-ratings for losses and design principles
- Identify opportunities to increase specific energy
 - Provide extra margin on the mission timeline
 - Extend timeline on the surface for additional science activities

Notional Lander Concept

Initial battery module design (~12.5 kWh)

Defining Europa Lander Battery Needs

Low Gain Bridle Exit	Parameter	Values	Comments
Collection Dock Adaptive Stabilizers (x4)	Operational temperature	0 to +70°C	Significant waste heat from avionics and cells
	Non-operational temperature	-40 to +70°C	During cruise stored at 0°C
	Peak power	~510 W	Sampling
Primary Battery Assembly (x4)	Average power	~50 W	20 W sleep mode
Robotic Arm (5 DoF) with End Effector	Radiation tolerance	2-3 Mrad	JOI and Landing
Collection Tools Benypart Show in Red	Storage Duration	7-11 years	Pre-launch, cruise

- Initially assume 12s26p module design operating over 24 31V
- Max. power is 510W / 24V = 21A / 26p strings = 800 mA / cell (sampling warm-up power mode)
- Min. power is 20W / 31.2V = 0.640 A / 26p strings = **25 mA / cell** (sleep mode)
- Currents may be <25 mA, due to a lower sleep power mode, use of more strings or both

Initial Consideration of Battery Deratings

Loss Factor	Value	Comments
Depassivation Requirement	-3%	JPL Design Principle
80% Depth of Discharge Requirement	-20%	JPL Design Principle
Loss of string	~500 Wh (-1%)	JPL Design Principle
Storage Losses	-16%	Estimate based on 2% annual loss at 20°C
Other losses	-5%	Estimate based on 10 Mrad radiation testing

• What can we do to address deratings of nearly -45%?

• First: target maximum initial cell specific energy

Initial COTS Screening for High Specific Energy Options (ca. 2018)

Specific Energy at ~C/300 and 0 °C

- Li/CF_x only realistic option to meet mission requirements (>700 Wh/kg target)
- Enabled by moderate temperature and low rate conditions
 - Highest current well within Li/CF_x limits
 - Low currents may actually pose challenges
- Radiation tolerance largely unknown at the time

Li/CF_x D-Cell Datasheet Values (2018)

	EaglePicher	Rayovac
Part #	LCF-129	Developmental D
Nominal Voltage (V)	2.6	2.5
Capacity (Ah)	16 (25ºC, 2 A, 2V cut-off)	19 (22ºC, 50 mA, 2V cut-off)
Maximum Current (A)	4	3
Height (mm)	54.88	56.9
Diameter (mm)	33.3	33.2
Mass (g)	85	69
Operating temperature range (°C)	-40 to +85	-20 to +90
Self Discharge (%/year)	1	2
Specific Energy (Wh/kg)	471* (2 A)	716** (50 mA)
Case	Steel	Aluminum
*Evaluated at 25°C, 2 A to 2V cut-off		
**Evaluated at 22ºC, 50 mA to 2V cut-off		

11/16/2022

7

Initial JPL Li/CF_x D-Cell Screening (Aluminum Packaging)

	1.5V cut-off ((50 mA, 20ºC)	2.0V cut-off (50 mA, 20ºC)				
	Capacity (Ah)	Specific Energy (Wh/kg)	Capacity (Ah)	Specific Energy (Wh/kg)			
Eagle-Picher	17.5	641	17.39	640			
Rayovac	19.5	729	19.2	724			

Specific Energy vs. Discharge Current (20°C)

- Represented "off-the-shelf" cells that were available from the vendors
- Both featured developmental aluminum packaging
- Not yet optimized for Europa Lander

Europa Lander Battery Development Task

- In 2018, the Europa Lander project embarked on a major effort to develop and test improved Li/CF_x cells that could meet the aggressive mission targets
- JPL engaged two vendors to support three generations of Li/CF_x cell "builds" to demonstrate >700 Wh/kg
 - Rayovac
 - EaglePicher Technologies
- Focus on increasing specific energy through cell process improvements
 - Low mass aluminum can design
 - Increase active material loadings
 - Evaluate alternative electrolytes
- Designed and implemented extensive test campaign to evaluate suitability for Europa Lander mission concept
- Following Build 1, Rayovac exited the Li/CF_x business
- Executed three total cell builds with EaglePicher
 - Final cells will be delivered in late 2022
 - This talk will focus on preliminary Build 3 results, for cell testing completed to date

EaglePicher Cell Improvements

- Use of commercially available carbon fluoride (CF_x) powder
- EPT manufactured cells in D-size form factor using aluminum cases
- Advanced web coating process similar to that used in lithium ion technology
- Cathode composition / formulation optimized for high electrode density
 - Foil current collector
 - 50-60 micron thickness electrodes
- Baseline electrolyte: LiBF₄ salt in a solvent blend of propylene carbonate and 1,2-dimethoxyethane (PC:DME)
 - Incorporated JPL modified electrolytes in a sub-set of cells

References

- 1. "Advanced Li-CFx Technologies for Space Application," Mario Destephen, Eivind Listerud, Ernest Ndzebet, and Dong Zhang, AIAA Propulsion and Energy Forum 10-12 July 2017, Atlanta, GA, 15th International Energy Conversion Engineering Conference.
- 2. "Advances in Lithium Carbon Monofluoride (Li/CFx) Technologies," Mario Destephen, 2022 Advanced Power Systems for Deep Space Exploration Conference, Aug. 30 to Sept. 1, 2022 (Virtual).

Build 1 EaglePicher Li/CF_x D-Cell Performance Recap (2018)

- Capacity: Between ~16-18 Ah
- Specific Energy: Between ~525 and 700 Wh/kg
- Fell short of >700 Wh/kg target at all rates and temperatures
- Targeted improvement with higher energy cathodes in Builds 2 and 3

Build 3 Li/CF_x Cell Test Campaign

- Receive 200 baseline cells total
- Cell Dispersion Testing
- Beginning-of-life (BOL) Performance Testing
- Irradiated and Aged Performance Testing
- Storage Testing
- Voltage Delay / Depassivation Testing
- Heat Evolution Testing
- Gas Sampling of Irradiated Cells

Test	Number of Cells
Cell Dispersion Testing	10
BOL Pristine Performance Testing	72
Aged Irradiated Performance Testing	24
Self Discharge Testing	60
Depassivation / Voltage Delay Test	6
Heat Evolution	9
Control Cells (irradiation)	6
Gas sampling irradiated cells	13
Total	200

Li/CF_x D-Cell Build 3 Dispersion Testing at 250 mA and 20°C (2022)

Build 3 Capacity Dispersion Data Li/CF_x D-Cells

- Test 10 cells at 250 mA and 20°C to evaluate capacity dispersion
- Monitor manufacturing process
- Use to re-consider 80% DOD battery requirement, by better understanding cell-to-cell variances
- Outlier later identified with low electrolyte content

Li/CF_x D-Cell Capacity Dispersion Build 1 vs. Build 3 (2018 vs. 2022)

ID	Mean Capacity (Ah)	Standard Dev.
Build 1	17.78	0.3075
Build 3	19.29	0.5876

- Improved capacity for Build 3 vs. Build 1, but with wider spread in mean values
- Still a developmental cell, can improve dispersion with improved manufacturing controls following scale-up

Build 3 Multi-Rate Testing at 20°C

- Unusual trend first observed in Build 1 and again confirmed in Build 3
- Very low rate (10 mA) discharge results in anomalously low capacity delivery
- Low mean value relative to 50 mA condition, and much larger dispersion in values

- 10 mA discharge at 20°C resulted in capacities in 14-19 Ah range
- Converges to high capacity with little spread at currents ≥20 mA

"Anomalous Behavior During Low Rate Discharge of Li/CF_X Cells," Hui Li Seong et al 2022 J. Electrochem. Soc. 169 060550

Rate Dependent Li Anode Utilization

Discharged at 10 mA and 20°C (~13.25 Ah)

Discharged at 250 mA and 20°C (~19 Ah)

Li anode utilization is poor at very low rates

Similar Observation with Build 3 Cells at 10 mA

- Spread not as large relative to Build 1 and 2 cells
- Still spans from ~17–19 Ah with low mean value

Evaluating Alternative Electrolytes

Baseline: 0.75 M LiBF₄ salt in PC:DME (3:7) LiNO₃: 0.75 M LiBF₄ salt in PC:DME (3:7) with <1% LiNO₃ Perchlorate: 0.75 M LiClO₄ salt in PC:DME (3:7)

Cell specific energy now in the 650 – 770 Wh/kg range from 10 – 750 mA at 20°C

Build 3 Isothermal Calorimetry to Evaluate Thermal Power Output

Across all rates there is a ~55 to 45% ratio of electrical to thermal power output

Radiation Losses on Build 1 Li/CF_x D-Cells

- Initial radiation testing indicates little impact on capacity for <10 Mrad TID
- Prior Build 1 testing indicated approximately 5% loss in capacity at 10 Mrad TID
- Updating more extensive 5 Mrad results from Build 3
- Expect little impact on cell performance (but concerns with use of perchlorate salt)
- Safety testing performed on irradiated cells by Sandia National Laboratory indicated no impact on cell behavior

Updated Cell Derating Estimates Based on Extensive JPL Test Campaign

Loss Factor	Comments	Update	Original Estimate	New Value
Depassivation Requirement	JPL Design Principle	Nominal on-load voltage reached without de-passivation step; will seek waiver	-3%	-0%
80% Depth of Discharge Requirement	JPL Design Principle	Actual cell-to-cell variance is close to 10% from dispersion testing	-20%	-10%
Loss of string	JPL Design Principle		~500 Wh (-1%)	-1%
Storage Losses	Estimate based on 2% annual loss at 20°C	Actual testing indicates storage at 0°C could bring to ~0.5% annually and ~4% total	-16%	-4%
Other losses	Estimate based on 10 Mrad radiation dose	Likely <1% based on actual testing results and updated 5 Mrad target	-5%	-1%
	Tota	l	-45%	-16%

Opportunity for improved deratings estimates and more realistic mission design

04/28/2022

Creating a Power Model JPL Multi-Mission Power Analysis Tool (MMPAT)

3 cells per condition (72 cells total)


```
MMPAT Model Development Process
```

- 1. Incorporate all test cases into a single Excel Workbook
- 2. Create tables of voltage vs. SOC as a percentage of usable capacity at each test temperature and rate
- 3. Convert tables of voltage vs. measured test temperatures at a series of usable SOC% values at each rate
- 4. From the above create a set of tables of temperature-corrected voltages vs. SOC at each nominal test temperature and rate
- 5. Write a consolidated voltage table for MMPAT to read
- 6. Run each of the original test cases in MMPAT
- 7. Plot the results of the MMPAT runs on the same axes with the original test data and compare the results

Assembling Cell Test Data into a Single Excel Workbook

⊟ ਙਾ ੇ - ≅ਾ	G 🖩 🖬 🔻									P	anasonic_18650N	ICR-B_3.2A	.h_TableBuil	der.xlsb - Ex	cel									Wood, Eric G (US	3462) 🖭	-	o x
File Home Ins	ert Page Layout F	ormulas D	ata Revie	w View	Developer	Add-ins	Help Team	🖓 Tell me what	you want to d																		$\mathcal{P}_{\!$
Normal Page Break Page Preview Layou Workbook Views	Custom t Views	☑ Formula Ba ☑ Headings	r Q [Zoom 1	100% Zoom Select Zoom	to New Window	Arrange Freez All Panes	Split C	D View Side by Side Synchronous Scro Reset Window Po: w	lling Swit ition Windo	ch Macr ws * * Macr	DS DS																
M20	-	i x	$\sqrt{-f_X}$	=IFERROF	R(OFFSET(IND	IRECT("""&\$4	AB20&"'!R9C4",FA	ALSE),0,\$AD20),N	A())																		~
A	B	C	D	E	F	G	н	I	J	K	L	v					w					х	Y	z		AA	AB
2 Cell Chemistry	Panasonic_10050100	JR-D	-10	sTestCod	2 77			1 00	-10	-2 800	L Rates														V	/nretest	(V) & Tar
3 Cell Can Nominal	2.8	Ah	0		3.04	0.00	0.00	1.00	-10	-1.400	C-2		-			Vpretes	: (V) & Us	sable Ca	p (Ah)						•	pretest	(v) & lup
4 Cell Can Namenlat	e 3.2	Ah	10		3.25	0.00	0.00	1.00	0	-0.933	C-3		4.3									4	4.3				
5 Cell Capacity Max	3.4	Ah	20		3.33	0.00	0.00	1.00	5	-0.560	C-5		4.1	******								35	4.1				
6 Cell Capacity Min	0	Ah	30		3.36	0.00	0.00	1.00	10	-0.280	C-10		3.9		1000				 N N 				3.9				
7 Table Version	1		#N/A		#N/A	0.00	0.00	1.00	15	-0.140	C-20		3.7	1000	And a state of the			- N. I	N N.		-	3 4	S 3.7				_
8 Test Format	JPL		#N/A		#N/A	0.00	0.00	1.00	20	0			Σ	and the second second			- N	- NI			-	2.5	3.5				
9 Cells per String	8		#N/A		#N/A	0.00	0.00	1.00	25	0.140	C-20		1 3.5								-	2 4	2 3.3				
10 StringsPerBattery	1		8						30	0.280	C-10		e 3.3					04 0 00000			_	1.5 4	S 3.1				
11 Test Cap Rate	#N/A	Ah							9	0.560	C-5		3.1									sab	2.9				
12 Addin Version	3									0.933	C-3		2.9									1 5	27				
13	ReadCycleData		Clear Enable	after Process	ing TRUE					1.400	C-2		2.7									0.5	2.7				
14	,		Temp Moving	Average Peri	ioc 11					2.800	1C		2.5									0	2.5	7 13	19 25 3	31 37	43 49
15					-					13				1 7	13 19 2	5 31 37	43 49	55 6	1 67 73	79 85	91						
17	that should not be mo	e below contai	n tormulas	,																							
18	that should not be me	Jamea Without	good reason		-																						
19 Case	Valid	Enable	Process	Test Typ	e Temp (C)	Temp Txt	Rate Sgnd (A)	Rate (A)	C Rate	Vcharge	Vdischarged	Extn				So	urce File					Source Shee	et Rate Cutoff Factor	Valid Ro	vs Dest	Temp (C) [*] I	Dest Sheet
20 1	TRUE	FALSE	FALSE	D	-10	-10	-2.8	2.0	10	4.:	2 2.5	xlsm N0	CR-62B-F-D	Discharge R	ate testing at	-10C (MMPA	D.xlsm					RAW Data	0.975	321		-10	-10C_Dis
21 2	TRUE	FALSE	E FALSE	D	-10	-10	-1.4	0.033333333	0-2	4.	2 2.5	xism NO	CR-62B-F-L	Jischarge Ri Discharge Ri	ate testing at	10C (MMPA	D vlcm					RAW Data	0.975	332		-10	-10C_Dis 10C_Dic
23 4	TRUE	FALSE	E FALSE	D	-10	-10	-0.5555555555	0.55555555	C-5	4	2.5	xism N0	CR-62B-F-D	Discharge R	ate testing at	-10C (MMPA	D.xlsm					RAW Data	0.975	318		-10	-10C_Dis
24 5	TRUE	FALSE	FALSE	D	-10	-10	-0.28	0.28	C-10	4.	2 2.5	xism N0	CR-62B-F-D	Discharge R	ate testing at	-10C (MMPA	F).xlsm					RAW Data	0.975	296		-10	-10C_Dis
25 6	TRUE	FALSE	FALSE	D	-10	-10	-0.14	0.14	C-20	4.	2 2.5	xlsm N0	CR-62B-F-D	Discharge Ra	ate testing at	-10C (MMPA	F).xlsm					RAW Data	0.975	244		-10	-10C_Dis
26 7	TRUE	FALSE	FALSE	D	0	0	-2.8	2.8	10	4.	2 2.5	xlsm N0	CR-62B-E-D	Discharge R	ate testing at	0C (MMPAT)	xlsm					RAW Data	0.975	356		0	0C_Dis
27 8	TRUE	FALSE EALSE	E FALSE	D	0	0	-1.4	0.93333333	0-2	4.	2 2.5	vism N	R-62B-E-L	Discharge R	ate testing at ate testing at	OC (MMPAT)	xism vlem					RAW Data	0.975	366		0	0C_Dis
29 10	TRUE	FALSE	FALSE	D	ŏ	ŏ	-0.55	0.555555555	C-5	4.	2 2.5	xlsm N0	CR-62B-E-D	Discharge R	ate testing at	0C (MMPAT)	xlsm					RAW Data	0.975	346		ŏ	0C Dis
30 11	TRUE	FALSE	FALSE	D	0	0	-0.28	0.28	C-10	4.:	2 2.5	xism NO	CR-62B-E-D	Discharge R	ate testing at	OC (MMPAT)	xlsm					RAW Data	0.975	320		0	0C_Dis
31 12	TRUE	FALSE	FALSE	D	0	0	-0.14	0.14	C-20	4.	2 2.5	xism NO	CR-62B-E-D	Discharge R	ate testing at	0C (MMPAT)	xlsm					RAW Data	0.975	263		0	0C_Dis
32 13	TRUE	FALSE	FALSE	D	10	10	-2.8	2.8	10	4.	2 2.5	xism N0	CR-62B-D-D	Discharge R	ate testing at	10C (MMPAT).xlsm					RAW Data	0.975	384		10	10C_Dis
33 14	TRUE	FALSE	E FALSE	D	10	10	-1.4	0.033333333	0-2	4.	2.5	xism N0	-R-62B-D-L	Jischarge R Discharge R	ate testing at	10C (MMPAT).xism).viem					RAW Data	0.975	392		10	10C_Dis
35 16	TRUE	FALSE	FALSE	D	10	10	-0.56	0.55	C-5	4.	2.5	xism N(CR-62B-D-D	Discharge R	ate testing at	10C (MMPAT).xlsm					RAW Data	0.975	367		10	10C Dis
36 17	TRUE	FAL SE	FALSE	<u>n</u>	10	10	-0.28	0.28	C-10	4	2 9	xism N0	CR-62B-D-F	Discharge R	ate testino at	10C (MMPAT) xlsm					RAW Data	0.975	340		10	10C Dis
▲ → … VtgVs	sTempVsPct TempV	sTempVsPct	TempSm	nVsPct 1	Temp Meas Vs F	oct VtgM	easVsPctTwk	VtgMeasVsPct	TempMeas\	/sAh V	gMeasVsAhTpr	Vtgl	MeasVsAhL	Jsbl Vtg	gMeasVsAhZb	Capaciti	es Maste	ter 30C	_Chg 20C	_Chg 10C_	_Chg 0	IC_Chg -10	C_Chg 30C_Dis	🕂 🗄	(•
Ready Calculate 🔠																								## E	— –		+ 100%

NASA

Comparison of Actual to Modeled Cell Voltage Based on One Validation Test Case

Case 23: -0.05A, 70C Scale: 100% Starting SOC: 0.00

Good tracking of actual vs. modeled voltage, with larger deviation at the end of discharge

Initial Low Complexity MMPAT Test

- Good voltage tracking with greater deviation at the end of discharge
- Underestimated capacity by ~7%
- Spread from dispersion testing ~5%

More Realistic Mission Sim Modeling and Testing

Evaluating more complex multi-rate, multi-temperature profiles (in progress)

Progress of Europa Lander Battery Cell Development 2018 - 2022

	Capacity (Ah)	Energy (Wh)	Cell Specific Energy at 20°C and 250 mA to 2V cut-off (Wh kg ⁻¹)
Initial COTS cell design	16.98	43.3	614
Europa Lander Build 1	17.78	45.1	654
Europa Lander Build 2	17.80	42.8	657
Europa Lander Build 3	19.29	49.5	695
Baseline to Build 3 Increase	+2.31	+6.2	+81

Battery Design 1: 1248 cells \rightarrow ~8 kWh additional energy vs. COTS (Baseline design) **Battery Design 2:** 1584 cells \rightarrow ~10 kWh additional energy vs. COTS (Mission Life Extension)

Battery Design	# of Cells	Cell Mass (kg)	Battery Mass	BOL Energy
1	1248	89	119	61,855
2	1584	112	150	76,626

Conclusions and Path Forward

- Europa Lander investments in Li/CF_x technology have resulted in significant cell level performance enhancements (~650 to 770 Wh/kg)
- Extensive test campaign has supported improved deratings estimates
- Europa Lander mission concept future uncertain, but many other space applications on the horizon
- Using power models to simulate operations for other mission concepts
- Next: New electrode materials and electrolytes to increase capacity
- Current collaboration with the City College of New York (Dr. Rob Messinger and his group), focused on detailed studies of CF_x

Acknowledgements

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

This work was supported by the NASA Science Mission Directorate

All rights reserved. The information presented about future NASA mission concepts is pre-decisional and is provided for planning and discussion purposes only.

© 2022 California Institute of Technology. Government sponsorship acknowledged.