Detailed Characterization of Emissions from Battery Fires

SOUTHWEST RESEARCH INSTITUTE®

November 16th, 2021 Vinay Premnath, Lead Engineer

POWERTRAIN ENGINEERING

©SOUTHWEST RESEARCH INSTITUTE

swri.org

Outline

- Overview and background
- Project brief
- Experimental methods
- Instrumentation
- Results
 - Physical observations, gaseous and particle emissions
- Summary

Overview

- Significant growth in adoption of electric batteries for a wide array of applications
- Lithium-ion (Li-ion) batteries are commonly used due to high energy density and specific energy capacity
 - These desirable characteristics also make them a safety hazard
- Objectives:
 - To investigate emissions from Li-ion battery fires triggered by thermal runaway
 - Develop a robust process to capture such emissions

Background

- Several battery fire incidents in the last few months
 - Morris Illinois fire resulted in the evacuation of 4000 people (1000 homes)
 - Fire lasted several days
 - 27 different chemistries
- Critically important to understand composition of particulates and gases emitted from such fires
 - To equip first responders with appropriate PPE
 - To understand impact on people living nearby
 - Environmental impact air and water quality
 - Develop solutions to mitigate such emissions

Morris Illinois (June 2021)

LaSalle, Illinois (July 2021)

Haverford Pennsylvania (July 2021)

Australia (August 2021)

Several e-bike fires (2021)

POWERTRAIN ENGINEERING

©SOUTHWEST RESEARCH INSTITUTE

Project Brief

- Conducted detailed characterization of particle emissions from Li-ion battery fires triggered by thermal runaway
- Two different types of Li-ion battery technologies were evaluated Lithium nickel manganese cobalt (NMC) oxide system and Lithium iron phosphate (LFP) system
- Five tests were conducted to gain information on repeatability, impact of battery chemistry, and initiation mechanism on emissions
 - Test I LFP via nail penetration
 - Test 2 LFP via nail penetration_
 - Test 3 LFP via overcharging
 - Test 4 LFP via overcharging _
 - Test 5 NMC via nail penetration
- All modules charged to full SOC

Repeatability/Variability

- Initiation mechanism
 Repeatability/Variability
- Battery chemistry

Experimental Methods

- Test articles include four LFP modules and one NMC module
 - Capacity of NMC module is 7.56 kW-hr, LFP module is 0.864 kW-hr
- Tests were conducted at SwRI's Fire Tech facility that is equipped with a large pollution abatement system

Cell chemistry	LFP	NMC
Battery type	Cylindrical	Pouch
Capacity, Ah	2.5	60
Cutoff voltage, V	3.6	4.2
Maximum cont. charge rate, A	10	60
Maximum cont. discharge rate, A	60	120
Dimensions, mm	26 φ, 66.5 height	16.5 x 100 x 330
Weight, g	70	820
Module configuration	8P12S	3P10S
Module Energy, kWh	0.864	7.56

POWERTRAIN ENGINEERING

Experimental Methods (Cont'd...)

- Test article placed inside the enclosure
- Particle/gaseous emissions sampled from inception to completion no suppression systems
- Sufficient oxygen was always present to simulate fire incidents occurring at ambient conditions

Emissions Instrumentation

Solid Particle Sampling System (SPSS)

Solid Particle Sizer – PN/size (metallic + soot, no volatiles)

Total Particle

Sizer – PN/size

(volatile + solid)

Sierra BG-3

- AVL Micro-Soot Sensor for real-time black (soot) carbon measurement
- TSI Engine exhaust particle sizer (EEPS) for real-time total particle number/size
 - 5.6 nm to 560 nm detection range
- SwRI's SPSS + TSI EEPS for real-time solid particle number/size
 - Includes a catalyst maintained at 350 °C that removes volatile species
 - Helps characterize solid constituents such as metallic and soot particles
- Sierra BG-3 for PM filter measurement
 - Post analysis for volatile organic fraction (VOF) determination
 - Elemental analysis of filters
- FTIR was used to characterize gases
 - CO, CO₂, NO, NO₂, HCN, HCI, HF, CH₂O, CH₄ and C₃H₈

Battery Module Instrumentation

- LFP module was instrumented with 16 thermocouples and 6 voltage sensors
- NMC module was instrumented with 16 thermocouples and 5 voltage sensors

NMC module thermocouples

Side 1

NMC module Voltage sensors

Side 2: (-) Terminals

SwRI

©SOUTHWEST RESEARCH INSTITUTE

swri.org

Results-I Physical Observations

NMC nail penetration

- LFP nail-penetration tests
 - Only cells in the path of the nail experienced thermal runaway
- LFP overcharge tests
 - All cells in the module experienced thermal runaway
 - Significant smoke and fire was observed
- NMC nail-penetration tests
 - All cells in the module experienced thermal runaway
 - Thermal runway propagation was observed cell-to-cell
 - Significant smoke and fire was observed

POWERTRAIN ENGINEERING

Results-2 Battery Parameters

All modules were charged to full state-of-charge

LFP modules entered thermal runaway after about 15 minutes of overcharging

Results-3 Gaseous Emissions

LFP via nail-penetration (no significant emissions)

- High emissions observed for multiple gases
- HF exceeded immediately dangerous • to life or health (IDLH) limit of 30

ppm

- CO₂ peak 20 times higher than LFP
- Formaldehyde above IDLH limit of 20 ppm **POWERTRAIN ENGINEERING**

swri.org

©SOUTHWEST RESEARCH INSTITUTE

Results-4 Particle Emissions (Real-time)

Background PM filter

PM Filter for Test 4

Test	Test duration, sec	PM2.5 emissions, g/hr	Black carbon emissions, g/hr	Solid PN emissions, part./hr	Total PN emissions, part./hr
Test 1_LFP nail-pen	260	1.81	0.00	1.56E+15	4.24E+15
Test 2_LFP nail-pen	266	0.00	0.00	1.12E+14	1.61E+15
Test 3_LFP OC	1376	386.09	149.90	8.89E+16	1.13E+17
Test 4_LFP OC	1392	375.97	185.78	6.11E+16	1.83E+17
Test 5_NMC nail-pen	1535	551.03	66.52	1.06E+17	2.08E+17

POWERTRAIN ENGINEERING

Solid particle number emissions 6.00E+07 2.00E+06 5.00E+07 Solid particle number, part./cc 1.50E+06 4.00E+07 n **3** 1.00E+06 particle 5.00E+05 3.00E+07 Ы 0.00E+00 2.00E+07 200 300 100 0 -5.00E+05 Time, sec 1.00E+07 -Test 2_LFP nail-pen -Test 1_LFP nail-pen 0.00E+00 200 400 600 800 1000 1200 1400 1600 1800 -1.00E+07 Time, sec -Test 1_LFP nail-pen —Test 2 LFP nail-pen —Test 3 LFP OC —Test 4_LFP OC -Test 5_NMC nail-pen

Results-5 Particle Size Distributions

Solid particle size distribution

- Particles were observed to be in the respirable size range
- All five tests exhibited unique size signatures, both, for solid and total particles
- Tests | and 2 showed different size signatures for both, solid and total particles
- Tests 3 and 4 also showed different size signatures

POWERTRAIN ENGINEERING

Results-6 PM Analysis

- TX-40 PM filters were analyzed via vacuum oven sublimation
 - Heated at 225 °C over 8 hours under vacuum
- Quartz filters were analyzed for organic carbon/elemental carbon partitioning
 - Using Sunset Lab Carbon Aerosol Analyzer

	PM2.5	Volatile	
Test	emissions,	weight	OC/TC Ratio
	g/hr	fraction	
Test 1_LFP nail-pen	1.81	NA	100%
Test 2_LFP nail-pen	0.00	NA	100%
Test 3_LFP OC	386.09	19%	87%
Test 4_LFP OC	375.97	20%	55%
Test 5_NMC nail-pen	551.03	8%	50%

swri.org

Summary

- Emissions from battery thermal runaway events can result in significant particle emissions
 - 5 to 6 orders of magnitude higher than those typically emitted from exhaust of modern heavy-duty diesel engine
 - Particles are well within the respirable size range
- Battery chemistry coupled with initiation mechanism influences magnitude of emissions, along with release profile
 - Initiation mechanism could play an important role in the scale of the thermal runaway event
 - In a module, there could be localized impact with some cells experiencing thermal runaway without further propagation
- Physical dimensions and arrangement of cells within a module could influence the severity of the runaway event
- Particle emissions from thermal runaway events of identical modules induced into runaway via the same mechanism could be highly variable

Thank you for your attention!

Southwest Research Institute[®]

Vinay Premnath vpremnath@swri.org 210-522-3783

POWERTRAIN ENGINEERING