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Introduction
Flammability of Li-ion batteries’ electrolyte is a safety hazard
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Electrolyte flammability
• Many fire incidents (cell phones, cars, cargo planes...)
• Need for a thermal control unit (weight addition for aerospace industry) or…
• Reduce/suppress flammability of electrolyte (fire suppressant agent(s) addition)

Texas A&M University
• Shock tubes (ignition delay time, CO and H2O laser absorption) and closed vessels 

(laminar flame speed, lower flammability limit) to study combustion properties of:
• Electrolyte’s components 
• Battery thermal runaway gases (TRG)
• Effect of fire suppressants
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Shock Tube
Experimental Setup
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Endwall Region of the Shock Tube
Ignition Diagnostic
Experimental Setup



Results – Ignition delay time for linear carbonates
Lack of effect of equivalence ratio and molecular structure
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Results – Ignition delay time for linear carbonates
Models in good agreement with the new data but still could be improved
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CO and H2O laser diagnostics implemented on the TAMU shock tubes

CO Laser Diagnostic
• Quantum cascade laser (QCL)
• Matched InSb photodetectors
• Removable CO/Ar cell
• Fundamental (Δ𝜈 = 1) CO band
• R(12), ν" = 0 transition (4566.17 nm)
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H2O Laser Diagnostic
• Tunable diode laser (TDL)
• InGaAs photodetectors
• Lexan enclosures (N2, < 0.1% RH)
• The 𝜈! + 𝜈" combination band
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Experimental Setup – Laser Diagnostics
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Results – Ignition delay timen for linear carbonates
Model needs large improvements
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HTHP test vessel used for performing laminar flame speed experiments

Experimental Setup – Laminar Flame Speed
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• 17-4PH Stainless Steel

• 31.8 cm ID, 27.9 cm length

• Ø12.7 cm windows

• Maximum T0, P0: 475 K, 10 atm



Schlieren setup is used to monitor flame

Experimental Setup – Laminar Flame Speed
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• Mercury arc lamp

• Circular knife edge

• Photron FastCam SA1.1
(8000 – 22,500 fps) 
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Results – Laminar Flame Speed for linear carbonates
Experimental trends captured by modern detailed kinetics mechanisms
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DMC predictions 
improved in recent 
TAMU model 
(Atherley et al., 2021)
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Fire suppressants for Li-ion battery electrolyte
Several kinds of fire suppressants considered
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DiEthyl Carbonate (DEC)

Similar structure w/ 
electrolyte components

Di (2,2,2 trifluoroethyl) Carbonate 
(DtFEC)

Bis (2,2,2 trifluoroethyl) Phosphonate



Fire suppressants for Li-ion battery electrolyte
Way to assess the fire suppressant effectiveness
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• Add a small proportion of fire suppressant to well-known fuels (H2, CH4)

• Fundamental combustion properties => comparison between neat and seeded 
mixtures

• Ignition delay time
• Laminar flame speed

• Method used with Halons (CF3Br, CF3I, CF2BrCl, C2HF5…), and 
Organophosphorus (DMMP, DEMP, DIMP, TEP...)



LFS Results: Large effect of 0.5% DtFEC addition with H2 (f >1.5)
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Fire suppressant effect proportional to DtFEC concentration

Results – Di(2,2,2 trifluoroethyl)Carbonate (DtFEC)
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Results – Di(2,2,2 trifluoroethyl)Carbonate (DtFEC)
LFS Results: Large effect of 0.5% DtFEC addition with CH4

Fire suppressant effect proportional to DtFEC concentration



Results – Di(2,2,2 trifluoroethyl)Carbonate (DtFEC)
Shock Tube results: 10% of Fuel as DtFEC
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Large change in the slope (global activation energy)
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Significant difference of fire suppressant effect compared to H2

Results – Di(2,2,2 trifluoroethyl)Carbonate (DtFEC)
Shock Tube results: 10% of Fuel as DtFEC
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Results – Di(2,2,2 trifluoroethyl)Carbonate (DtFEC)
CO profile during pyrolysis – Comparison with DEC 

Similar structure but F atoms 
(DtFEC) instead of H atoms (DEC)

=> radically changes the 
pyrolysis chemistry.

DECDtFEC
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The current approach to LIB TR hazard analysis is not a priori and can be expensive
LIB CEA Motivation

• Problem Statement: Significant energy, toxic gases, and potentially combustible gases are 

released during thermal runaway of LIBs, which all represent potential hazards

• Current Approach: Evaluation of these hazards by inducing electrolyte decomposition or LIB 

thermal runaway in abuse experiments

• Objective: 1) Develop an a priori modeling approach
2) Validate against existing experimental data
3) Apply to various LIB chemistries, designs, conditions, etc.
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CEA is utilized to predict reaction equilibrium conditions
Overview of Chemical Equilibrium Analysis (CEA)

Input Parameters:

1)  Cell Composition
- Anode, Cathode, Electrolyte, etc.
- Mass concentration and ∆𝐻!"

2)  Ambient Conditions
- Pressure (ambient vs. vacuum)
- Gas Composition (air, ISS, or vacuum)

Computation Output(s):

1)  Reaction Product Chemistry
- Relative product concentrations
- Product phase (condensed vs. gaseous)

2)  System Temperature

3)  Total Heat Release

Thermodynamic Libraries

Potential Product Properties: 𝐶!(𝑇), 𝐻(𝑇), 𝑆(𝑇)

CEA Software:

Commercial or free software:
NASA CEA

Praqsys CEQUEL
LLNL Cheetah

Various modeling systems:

Minimization of Gibbs Free Energy (𝐺):

∆𝐺 = ∆𝐻 − 𝑇∆𝑆

Conservation of Elements Equilibrium Constants:

𝛼𝐴 + 𝛽𝐵 ⇌ 𝛾𝐶 + 𝛿𝐷

𝐾 =
[𝐶]#[𝐷]$

[𝐴]%[𝐵]&

𝐾 = 𝑒 '(∆*"
+,

LIB 
Thermal 
Runaway

T, P H, P

T, V U, V



Example Results: Electrolyte Decomposition (ARC Experiments)
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Example Results: LFP Battery Thermal Runaway (CV Bomb TR)

Key Findings:

• Moderate agreement observed between 

computations and experiments

• Modeling refinements:

• Missing products (electrolytes, etc.)

• Restrictive cathode decomposition

• Experiments can be improved

• Pre-experiment characterization

• Detect condensable gases 

(electrolytes, water, etc.)

• CEA has the potential be fully predictive 

for LIB thermal runaway hazards

Good agreement for plain electrolyte experiments, discrepancies for full LIB 
CEA Modeling – Results and Trends
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TRG mixture composition determination
Averaged from 40 detailed compositions from the literature

Fuel C3H8 C2H6 C2H4 CH4 H2 CO CO2
Mole 
fraction

0.007 0.019 0.027 0.119 0.144 0.168 0.516

.

TRG composition varies greatly with:
- Electrolyte composition
- Nature of the electrode
- State of charge 
- Failure environment (air, N2, Vacuum…)
- Etc. 

ÞAverage mixture determined to see if models able to capture combustions properties 
Þ If models are accurate, the assumption is that models are good (enough) for any TRG 

mixture variation 
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Results – TRG laminar flame speed
Experimental trends captured by modern detailed kinetics mechanisms



Results – TRG Ignition delay time
Experimental trends captured by modern detailed kinetics mechanisms
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Results – H2O profiles
Modern detailed kinetics mechanisms can still be improved
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Results – Lower Flammability Limit
Critical parameter for fire safety in case of thermal runaway + venting
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LFL = 9.15% fuel in air (f = 0.277)



Conclusions
• New experimental data for Li-ion battery electrolyte combustion

• Wide array of techniques, ranging from global kinetics data to laser speciation profiles
• Effects of fire suppressant candidates on combustion properties

• Comparison with modern detailed kinetics models
• Current models for linear carbonates still need improvement (ongoing)
• No models available for fire suppressants

• Models under development in collaboration with ENSTA Paris (Dr. L. Catoire)

• TRG combustion properties studied 
• Modern detailed kinetics models capable of predicting satisfactorily the data => may eliminate the 

need for experiments w/ TRG flammable mixtures

• Future work on cyclic carbonates (experiments + model) and ultimately unified 
model for TRG, linear + cyclic carbonates, and fire suppressants
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