Current Lithium-ion battery fire research at Texas A&M University

Olivier Mathieu, James C. Thomas, and Eric L. Petersen

J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station TX, USA

olivier.mathieu@tamu.edu

2021 NASA Aerospace Battery Workshop Virtual Conference, Online November 16-18, 2021

Texas A&M Team Members

Eric L. Petersen (Prof.)

Olivier Mathieu (Res. Associate Prof.)

James "Chris" Thomas (Res. Assistant Prof.)

Sulaiman Alturaifi

Tatyana Atherley

Sean Cooper

Claire Grégoire

Mattias Turner

2

- 1. Introduction/Context
- 2. Fundamental Combustion properties of Li-ion battery electrolyte components
- **3.** Fire suppressants for Li-ion battery electrolyte
- 4. Flammable thermal runaway gas (TRG)
 - Chemical equilibrium analysis (CEA) method for composition prediction
 - Experimental study of combustion properties

TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

Introduction

Flammability of Li-ion batteries' electrolyte is a safety hazard

Electrolyte flammability

- Many fire incidents (cell phones, cars, cargo planes...)
- Need for a thermal control unit (weight addition for aerospace industry) or...
- Reduce/suppress flammability of electrolyte (fire suppressant agent(s) addition)

Texas A&M University

- Shock tubes (ignition delay time, CO and H₂O laser absorption) and closed vessels (laminar flame speed, lower flammability limit) to study combustion properties of:
 - Electrolyte's components
 - Battery thermal runaway gases (TRG)
 - Effect of fire suppressants

1. Introduction/Context

2. Fundamental Combustion properties of Li-ion battery electrolyte components

TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

5

Experimental Setup

Shock Tube

TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

Experimental Setup

Ignition Diagnostic

Endwall Region of the Shock Tube

7

Results – Ignition delay time for linear carbonates

Lack of effect of equivalence ratio and molecular structure

Results – Ignition delay time for linear carbonates

Models in good agreement with the new data but still could be improved

Experimental Setup – Laser Diagnostics

CO and H₂O laser diagnostics implemented on the TAMU shock tubes

CO Laser Diagnostic

- Quantum cascade laser (QCL)
- Matched InSb photodetectors
- Removable CO/Ar cell
- Fundamental ($\Delta \nu = 1$) CO band
- R(12), v'' = 0 transition (4566.17 nm)

H₂O Laser Diagnostic

- Tunable diode laser (TDL)
- InGaAs photodetectors
- Lexan enclosures (N_2 , < 0.1% RH)
- The $v_1 + v_3$ combination band
- $5_{5,1} \leftarrow 5_{5,0}$ transition (1388.139 nm)

TEXAS A&M ENGINEERING EXPERIMENT STATION

No interference from CO or CO₂

Results – Ignition delay timen for linear carbonates

Model needs large improvements

Experimental Setup – Laminar Flame Speed

HTHP test vessel used for performing laminar flame speed experiments

- 17-4PH Stainless Steel
- 31.8 cm ID, 27.9 cm length
- Ø12.7 cm windows
- Maximum T₀, P₀: **475 K, 10 atm**

Experimental Setup – Laminar Flame Speed

ζ_₹susγ

Lens #1: Plano-convex lens, Ø50.8 mm, f = 100 mm Lens #2: Plano-convex lens, Ø200 mm, f = 800 mm

<10

UL Filler this filler Lens #7 Hg Lamp

Camera

Schlieren setup is used to monitor flame

Flat Mirror

- Circular knife edge
- Photron FastCam SA1.1 (8000 – 22,500 fps)

Results – Laminar Flame Speed for linear carbonates

Experimental trends captured by modern detailed kinetics mechanisms

Outline

- **1. Introduction/Context**
- 2. Fundamental Combustion properties of Li-ion battery electrolyte components
- 3. Fire suppressants for Li-ion battery electrolyte
- 4. Flammable thermal runaway gas (TRG)
 - Chemical equilibrium analysis (CEA) method for composition prediction
 - Experimental study of combustion properties

Fire suppressants for Li-ion battery electrolyte

Several kinds of fire suppressants considered


```
Bis (2,2,2 trifluoroethyl) Phosphonate
```


Fire suppressants for Li-ion battery electrolyte

Way to assess the fire suppressant effectiveness

- Add a small proportion of fire suppressant to well-known fuels (H₂, CH₄)
- Fundamental combustion properties => comparison between neat and seeded mixtures
 - Ignition delay time
 - Laminar flame speed
- Method used with Halons (CF₃Br, CF₃I, CF₂BrCI, C₂HF₅...), and Organophosphorus (DMMP, DEMP, DIMP, TEP...)

TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

LFS Results: Large effect of 0.5% DtFEC addition with H_2 ($\phi > 1.5$)

Fire suppressant effect proportional to DtFEC concentration

LFS Results: Large effect of 0.5% DtFEC addition with CH₄

Fire suppressant effect proportional to DtFEC concentration

Shock Tube results: 10% of Fuel as DtFEC

Large change in the slope (global activation energy)

Shock Tube results: 10% of Fuel as DtFEC

Significant difference of fire suppressant effect compared to H₂

CO profile during pyrolysis – Comparison with DEC

Outline

- **1. Introduction/Context**
- 2. Fundamental Combustion properties of Li-ion battery electrolyte components
- **3. Fire suppressants for Li-ion battery electrolyte**
- 4. Flammable thermal runaway gas (TRG)
 - Chemical equilibrium analysis (CEA) method for composition prediction
 - Experimental study of combustion properties

LIB CEA Motivation

The current approach to LIB TR hazard analysis is not a priori and can be expensive

- **Problem Statement:** Significant energy, toxic gases, and potentially combustible gases are released during thermal runaway of LIBs, which all represent potential hazards
- Current Approach: Evaluation of these hazards by inducing electrolyte decomposition or LIB thermal runaway in abuse experiments
- Objective:
- 1) Develop an a priori modeling approach
- 2) Validate against existing experimental data
- 3) Apply to various LIB chemistries, designs, conditions, etc.

Overview of Chemical Equilibrium Analysis (CEA)

CEA is utilized to predict reaction equilibrium conditions

TURBOMACHINERY LABORATORY

TEXAS A&M ENGINEERING EXPERIMENT STATION

CEA Modeling – Results and Trends

Good agreement for plain electrolyte experiments, discrepancies for full LIB

Key Findings:

- Moderate agreement observed between computations and experiments
- Modeling refinements:
 - Missing products (electrolytes, etc.)
 - Restrictive cathode decomposition
- Experiments can be improved
 - Pre-experiment characterization
 - Detect condensable gases (electrolytes, water, etc.)
- CEA has the potential be fully predictive for LIB thermal runaway hazards

Outline

- **1. Introduction/Context**
- 2. Fundamental Combustion properties of Li-ion battery electrolyte components
- **3. Fire suppressants for Li-ion battery electrolyte**
- 4. Flammable thermal runaway gas (TRG)
 - Chemical equilibrium analysis (CEA) method for composition prediction
 - Experimental study of combustion properties

TRG mixture composition determination

Averaged from 40 detailed compositions from the literature

TRG composition varies greatly with:

- Electrolyte composition
- Nature of the electrode
- State of charge
- Failure environment (air, N₂, Vacuum...)
- Etc.

 \Rightarrow Average mixture determined to see if models able to capture combustions properties

⇒ If models are accurate, the assumption is that models are good (enough) for any TRG mixture variation

Fuel	C ₃ H ₈	C ₂ H ₆	C_2H_4	CH ₄	H ₂	CO	CO ₂
Mole fraction	0.007	0.019	0.027	0.119	0.144	0.168	0.516

TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

Results – TRG laminar flame speed

Experimental trends captured by modern detailed kinetics mechanisms

Results – TRG Ignition delay time

Experimental trends captured by modern detailed kinetics mechanisms

Results – H₂O profiles

Modern detailed kinetics mechanisms can still be improved

Results – Lower Flammability Limit

Critical parameter for fire safety in case of thermal runaway + venting

Conclusions

- New experimental data for Li-ion battery electrolyte combustion
 - Wide array of techniques, ranging from global kinetics data to laser speciation profiles
 - Effects of fire suppressant candidates on combustion properties
- Comparison with modern detailed kinetics models
 - Current models for linear carbonates still need improvement (ongoing)
 - No models available for fire suppressants
 - Models under development in collaboration with ENSTA Paris (Dr. L. Catoire)

TRG combustion properties studied

- Modern detailed kinetics models capable of predicting satisfactorily the data => may eliminate the need for experiments w/ TRG flammable mixtures
- Future work on cyclic carbonates (experiments + model) and ultimately unified model for TRG, linear + cyclic carbonates, and fire suppressants

TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

Acknowledgements

National Science Foundation, Award # 2037795.

