

Correlating Cell Failing Delta OCV Testing with Cell Defects

By: Ruth Young NASA-JSC EP5 and Eric Darcy NASA-JSC EP5

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration

Acknowledgements

Glimpse Thank you to Amariah Condon, Peter Attia, Easton Rasgon, Eric Moch for providing the high-quality CT scans

Eric Darcy and Sam Russell Thank you for all the mentorship and technical guidance

Outline

The importance of OCV screening
 Cell Strategic Reserve (CSR) dOCV Screening Process
 Results from dOCV Screen
 CT Scan Results of dOCV Screened Cells

NASA's Cell Strategic Reserve

- What is it?
 - A reserve of Li-Ion cells screened via NASA standards
 - Several cell designs are kept in stock with various key performance advantages (ex: High Energy vs High Power)
 - Molicel M35A
 - Molicel P28B
 - Samsung 30Q
 - LG M36

Our High Energy Cell Designs

LG INR18650 M36

- Previous heritage
 - 250 µm can wall
 - Safety fully characterized by JSC
 - Multiple variations beam tested in FTRC
 - 3 batches of ISCD trigger cells delivered to JSC
- At C/10 and room temperature
 - 270 Wh/kg, 710 Wh/L
 - ACR is 23.9 mohms
 - DCR is 29.8 mohms
- 70k lot (Nov 2020) delivered in Apr to JSC

Molicel INR18650-M35A

- Little previous heritage
 - Same manufacturer of ICR18650J, primary power for > 25 EVAs
 - Superior extreme cold performance
 - 214 Wh/kg at C/20 and -20°C
 - Multiple batches of ISCD trigger cells delivered to JSC
- At C/10 and room temperature
 - 277 Wh/kg, 725 Wh/L
 - ACR is 24.4 mohms
 - DCR is 32.5 mohms
- 120k lot (Feb 2021) delivered in Apr to JSC

Our High Power Cell Designs

Samsung INR18650-30Q

- Previous heritage
 - X-57 Electric Airplane
 - Safe high power battery demo
- At 3C and room temperature
 - 2483 W/kg, 206.9 Wh/kg
 - 6340 W/L, 528.1 Wh/L
 - 12.4 mohm ACR
 - 26.2 mohm DCR
 - 8.3% average waste heat
- 60k lot (Mar 2021) delivered in June to JSC

Molicel INR18650-P28B

- No previous heritage
- Not mass produced due to 2nd cathode tab
- At 3C and room temperature
 - 2528 W/kg, 202.3 Wh/kg
 - 6376 W/L, 510.3 Wh/L
 - 9.2 mohm ACR
 - 22.3 mohm DCR
 - 5.5% waste heat
- 60k lot (Aug 2021) delivered in Oct to JSC

INR-18650-P288 MOLICEL 104 2L820 08

Importance of dOCV Cell Screening

P28B Pre-Screen OCV Check

- OCV measurement 1 yr after fabrication
 - Want 10-12 mV range for +/-3 sigma, NOT 40 mV
- Trimodal distribution seen, decided a dOCV measurement was needed to pass or fail cells on OCV

Motivation for dOCV Screen

- Going from 95% to 65%
 SOC is ~200mV delta
 - Some NASA programs will condemn battery at a 50 mV un-balance (~7% SOC drop)
 - Spacesuit battery is NO GO for EVA if there is >20 mV difference
- Want to screen out potential latent internal cell shorts
 - Some latent defects could be showing very subtle OCV decays

Figure 2.2.3.2 – Capacity vs Voltage at each 5% DoD.

dOCV Process

Hypothesis

Question: Is there a correlation between dOCV failure and a bridging defect between anode and cathode visible by CT?

Hypothesis: Presence of high density (metallic) "bright spots" in JR could bridge anode to cathode causing internal shorts and leading to dOCV failures

P28B dOCV Screen Data

Pre-dOCV Screen Data

Arrow denotes failing Cell Selection for CT scans

13

Pre-dOCV Screen Data

- Note 2 cells from failing negative range were picked, range not shown on graph
- Ignored low rejects that were not negative

Passing Cell dOCV Data

- Removal of 3σ outliers until 3σ range is stable and 6σ% approaches 0
 - $-/+3\sigma = 5.34 / 11.96 \text{ mV}$
 - $6\sigma\% = 0.765\%$

*Ignored low rejects that were not negative

Key Cell Finding #1 – Anode Buckling

- Overlap of inner wind anode tab with start of cathode layer leading to severe buckling angle of anode
 - Buckling appears in both PASS and FAIL dOCV cells

FAILING Cell

Passing Cell

More Examples of Buckling

1 Fail

2 Fail

Key Cell Finding #2 - Delamination/Cathode Damage

- Severe buckling on failing cells showed a trend of delaminating graphite from anode
- Severe dOCV fails tend to have delamination at start of cathode at the inner wind

FAILING Cells

More Examples of Delam/Cathode Damage

2 Fail - Liberated Active Material

3 Fail - Delamination of Graphite(same image as #2 from slide #18)

Conclusions + Forward Work

- 1.2% of cells failed dOCV (-/+3 σ = 5.34 / 11.96 mV)
- Both passing and failing dOCV cells show anode buckling at inner wind
- Passing cells have cleaner cathode starts at the inner wind
- Failing cells have a degree of delamination/ deformation at cathode start at inner wind that seems to track with severity of dOCV failure
- Initial hypothesis was presence of high density "bright spots" could be bridging anode to cathode
 - Not seen
 - Scans are 250 microns between radial layers, tiny bright spots could have been missed
- FORWARD WORK: Look for heat affected zones in separator through DPAs

Samsung 53G1 Cell

MP date

- character 18 : J year of 2019 (A 2010, B 2011...)
- character 19 : 1 month of Jan (A Oct., B Nov., C Dec.)
- character 20 : 7 day of 7 (A 10, B 11, ...)

Version

- character 21 : 1 of 53G1 (2 53G2, 3 53G3, ...)

Assembly line - character 22 : C, Cheon-An of Korea - character 23 : I of 18 line (1 1line, 2line, A 10line, B 11line, ...)

OCV/IR

- character 24,25,26,27,28 : 3.5833mV
- character 29,30,31 : 13.5mohm

Samsung makes OCV data out to 4 decimal places available via QR code on each cell can

Raw Data*

*Graph does not show extreme outliers as it causes the rest of the graph to be unreadable

Raw Data*

*Graph does not show extreme outliers as it causes the rest of the graph to be unreadable

Raw Data ALL - Sorted

27