Consequence Analysis of Li-Ion Battery Thermal Runaway Events with Chemical Equilibrium Analyses

James 'Chris' Thomas and Eric L. Petersen Department of Mechanical Engineering Texas A&M University

> Jacob J. Darst and Eric C. Darcy Division of Propulsion and Power NASA Johnson Space Center

Donald P. Finegan Transportation and Hydrogen Systems Center National Renewable Energy Laboratory (NREL)

NASA Aerospace Battery Workshop

November 27-29, 2018

Huntsville, AL

Motivation

The current approach to toxic gas hazards during LIB thermal runaway is expensive and not 'a priori'

Problem Statement:

Toxic gas release during thermal runaway of Li-ion batteries is a potential hazard, but is not well characterized

Current Approach: Experimental evaluation of single batteries

Objectives:

Develop an a priori modeling approach
 Validate against existing experimental data
 Apply to various LIB designs and conditions

Overview of Chemical Equilibrium Analysis (CEA)

CEA is utilized to predict reaction equilibrium conditions

Input Parameters

1) Cell Composition

- Anode, Cathode, Electrolyte, etc.
- Mass concentration and ΔH_f^0
- 2) Ambient Conditions
- Pressure (ambient vs. vacuum)
- Gas composition (air, ISS, or vacuum)

IIB

Combustion

Thermodynamic Libraries

Output Parameters

- 1) Combustion Chemistry
- Relative product concentrations
- Product phase (condensed vs. gaseous)
- 2) Flame Temperature
- 3) Total Heat Release

$$G = H - Ts$$

$$\Delta G = \Delta G^{0} + RT lnQ$$

$$\Delta G^{0} = -RT lnK_{p}$$

$$\left(\frac{\partial lnK}{\partial T}\right)_{P} = \frac{\Delta H^{0}}{RT^{2}} \& \left(\frac{\partial lnK}{\partial P}\right)_{T} = \frac{\Delta V^{0}}{RT^{2}}$$

LNNL Cheetah 8.0

Literature Review:

Experimental Approaches

ARC and reaction gas composition analysis

Experiments

- DSC, ARC with temperature-transient gas sampling
- Reaction Gas Sampling (GC, FTIR) -
- Cell-level and sub-components

<u>Shortcomings</u>

- No 'true' ignition and combustion (slow dT/dt)
- Gas sampling data may be useful for kinetics modeling

Sandia National Labs; [Roth et al., 2004]

Gen1 Cells:	Anode:	75% MCMB-6-2800 Carbon
(Argonne National		16% SFG-6 Graphite
Laboratory Design)		9% PVDF Binder
	Cathode:	84% LiNi _{0.85} Co _{0.15} O ₂
		4% Carbon Black, 4% SFG6 Graphite
		8% PVDF Binder
	Electrolyte:	1M LiPF ₆ in EC:DEC (1:1)
Gen2 Cells:	Anode:	92% MAG10 Graphite
(Argonne National		8% PVDF Binder
Laboratory design)	Cathode:	84% LiNi _{0.80} Co _{0.15} Al _{.05} O ₂
		4% Carbon Black, 4% SFG6 Graphite
		8% PVDF Binder
	Electrolyte:	1.2M LiPF6 in EC:EMC (3:7)

1009 80% zed Compt

EC:EMC/LIPF_e: Normalized Gas Composition with Increasing LIPF_e (400

Temperature Effect for EC:EMC/1.2M LiPF,

Cone calorimetry and reaction gas composition analysis

Experiments

- Cone Calorimetry (Heat Release Rate)
- Reaction Gas Sampling (Reaction Composition)

Shortcomings

- Cell composition not well defined
 - Numerous estimates
 - Electrolyte, salt, SEI
- Oxidizer volume is not well quantified

CV 'bomb' with gas collection and explosion analysis

Experiments

- Constant-Volume (CV) Vessel with TR
- Reaction Gas Collection and Explosion
- Atmosphere Control

Shortcomings

- Cell composition not fully characterized
 - Lithium salts, SEI not included
- Slow Heating Rates (~1 K/s)

Exponent, Inc.; [Somandepalli et al., 2014]; [Somandepalli and Biteau, 2014]

Cell Test Chamber	20 L Combustion Chamber
	Sel X
	1

Cell Composition

			p -	~ -		
Component	Chemical Compound	1	Molecul Formul	ar a	ΔH _c (kJ.g ⁻¹)	Mass %
Таре	Polyester Terephthalat	te	(C ₁₀ H ₈ O ₄) _n		22.00 [25]	0.2%
Label	Polypropyler	ne	(C ₃ H ₆)		42.66 [24]	0.5 %
Separator	Polypropylen	e ¹	(C ₃ H ₆)		42.66 [24]	6.4%
Electrolyte w/o Salt	See	Tat	ole 2.		19.31 ^(*)	9.5%
Outer Packaging (Top)	Nylon 6		(C6H11NC))n	28.74 [25]	2.2%
Outer Packaging (Bottom)	Polypropyler	1e	(C ₃ H ₆),	6	42.66 [24]	2.1%
Positive Tab	Polyester Terephthalat	te	(C ₁₀ H ₈ O ₄) _n		22.00 [25]	0.9%
Negative Tab	Polyester Terephthalat	te	(C ₁₀ H ₈ O ₄) _n		22.00 [25]	0.9%
LiCoO ₂ coated, positive electrode (aluminum)	Lithium Coba Oxide	alt	LiCoO ₂ Ir		Inorganic Material	42.4%
Graphite- coated negative electrode (copper)	Lithium- intercalated Graphite (charged)	ł	LiC ₆		Inorganic Material	34.9%
Chemical Compound	Molecular Formula		ΔH_c (kJ.g ⁻¹)	% Volume in Electrolyte		% Mass in Electrolyte
Ethylene Carbonate	C ₃ H ₄ O ₃	1	12.30 [26]		15.1	12
Dimethyl Carbonate	C ₃ H ₆ O ₃	1	13.40 [27]		3.1	3
Diethyl Carbonate	C5H10O3	2	1.15 [26]		70.8	76
Propylene Carbonate	C₄H ₆ O ₃	1	6.53 [26]		9.8	9

Vent Gas Composition

Gas	50% SOC (%vol)	100% SOC (%vol)	150% SOC (%vol)	Roth <i>et al.</i> [4] (%vol) Test 1/Test 2
Carbon Dioxide	32	30	20.9	61.4/75.8
Carbon Monoxide	3.61	22.9	24.5	15.1/6.4
Hydrogen	30	27.7	29.7	5.1/5.9
Total Hydrocarbons	34	19.3	24	
Methane	5.78	6.39	8.21	7.4/1.9

Gas	50% SOC (%vol)	100% SOC (%vol)	150% SOC (%vol)	
Methane	5.78	6.39	8.21	
Ethylene	5.57	2.19	10.77	
Ethane	2.75	1.16	1.32	
Propylene	8.16	4.52	0.01	
Propane	0.68	0.26	2.54	
Isobutane	0.41	0.20	0.13	
n-Butane	0.67	0.56	0.39	
Butenes	2.55	1.58	0.60	
Isopentane	0.45	0.07	0.04	
n-Pentane	1.94	0.73	0.30	
Benzene	0.14	0.11	0.33	
Toluene	0.06	0.02	0.05	
Ethylbenzene	0.01	0.00	0.00	
m+p Xylenes	0.01	0.00	0.00	

CV 'bomb' with reaction gas analysis

Experiments

- CV Vessel with Gas Sampling (GC)
- Full cell composition given (NCA & LFP)

Shortcomings

- Cell compositions contain some uncertainty
- Slow heating rates (~0.1 K/min)

CV 'bomb' with reaction gas analysis

Experiments

- CV Vessel TR with Gas Analysis (GC), CCP Analysis
- Atmosphere Control
- Commercial 18650 Cells

Manufacturer	Cell (18650)	Chemistry	Capacity (Ah)
Samsung	ICR-26F	LiCoO ₂ (LCO)	2.6
LG	INR-MJ1	LiNiMnCoO ₂ (NMC)	3.5
Panasonic	NCR-B	LiNiCoAlO ₂ (NCA)	3.4

Shortcomings

- Cell composition not well defined (proprietary)
- Slow heating rates (~0.1 K/s)

[Delafuente, 2018]

Literature Summary

Toxic product formation in LIB thermal runaway is an active area of research

Summary:

- Toxic gas release during LIB thermal runaway is a noteworthy hazard and an active are of research
- Several experimental approaches are currently being taken
 - ARC, cone calorimetry, closed vessel sampling
 - Current experimental data lacks 'accurate' cell compositions
 - Temperature ramp (dT/dt) is typically too slow
 - Very little modeling has been completed
 - [Golubkov et al., 2015] experiments are the best available

CEA Modeling – Electrolyte Solutions

Electrolyte Compositional Analysis

Electrolyte reaction data provided by Sandia National Labs

Sandia National Labs; [Roth et al., 2004]

Electrolyte Compositional Analysis

Empirical density correlations developed

CEA inputs require knowledge of relative mass fractions (not concentration)

CEA Analysis – 1.2 M $LiPF_6$ in DEC, EC, EMC, DMC

Moderate agreement between experiment and computation

Scaled Chemistry

Full Chemistry

Full Chemistry (Cheetah Thermo Library) - 1.2 M LiPF $_6$

Sandia National Labs; [Roth et al., 2004]

CEA Analysis – LiPF₆ in EC

Ā

7

Moderate agreement between experiment and computation

Scaled Chemistry

100%

80%

60%

40%

and Gass Con

Full Chemistry

Sandia National Labs; [Roth et al., 2004]

Key Findings:

- Experimental and Computational Agreement
 - Moderate (chemistry) and Poor (total gas production)
 - May be due to slow heating conditions
- Thermodynamic libraries yield significantly different results
 - JCZS library favors H₂ and H₂O production
 - Cheetah library favors CH₄ production
 - Cheetah library agreed better with experiments
- Appreciable amounts of toxic substances detected (HF and P_4O_6)
 - Dilute compounds not yet evaluated

CEA Modeling – Lithium Ion Battery

Battery Compositional Analysis

Estimated battery composition given by Golubkov et al.

Experimental Methods:

- Mass and geometry of main components directly measured
 - Anode, cathode, separator, electrolyte
- Anode and cathode chemistry
 - Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)
 - Scanning Electron Microscopy (SEM)
 - Energy Dispersive X-Ray (EDX) Analysis
- Electrolyte identification
 - Solution immersion (CH_2Cl_2)
 - Gas Chromatography Mass Spectrometry (GC-MS)
- Separator Identification
 - Differential Scanning Calorimetry (DSC)
 - Thermal Gravimetric Analysis (TGA)

Battery Compositional Analysis

AM

Estimated battery composition given by Golubkov et al.

Key Compositional Assumptions:

- Binder chemistry and composition
 - Anode: 5% of total coating, Na-carboxymethylcellulose (Na-CMC, S=0.7)
 - Conducting agent: 5% of total coating, carbon black
 - Cathode: 5% of total coating, polyvinylidene fluoride (PVDF)
- Electrolyte salt
 - $LiPF_6$ at a concentration of 1.1 mol/L
 - 2% vinylene carbonate (VC, $C_3H_2O_3$) for SEI improvement
- Solid electrolyte interphase (SEI)
 - Complete VC polymerization to poly(vinylene carbonate) $C_6H_4O_6$ {1:1}
 - Ethylene carbonate reduction: lithium ethylene dicarbonate $(CH_2OCO_2Li)_2$ {1:2}

thium carbonate
$$Li_2CO_3$$
 {1:4}

- Formation of lithium fluoride LiF {1:4}
- Irreversible capacity loss
 - 8% of maximum anode capacity is trapped ($n_{Li}^{irr} = 0.08 n_{C_6}^a$)

Battery Compositional Analysis

ΔH_f^0 estimated from literature and computations

- LFP Battery composition is 'well' characterized
- Need heat of formation (ΔH_f^0) data for all components

	Component		М	ass	Concer	ntration
	Component		(g)	(%)	(mol)	(%)
	Aluminum Foil	AI	2.14	7.53	0.079	16.61
Cathode	Active Material - LFP*	LiFePO ₄	7.73	27.21	0.049	10.26
Cathode	Particle Coating	С	Mass C (g) (%) (m 2.14 7.53 0. 7.73 27.21 0. 0.97 3.41 0. 0.48 1.69 0. 0.48 1.69 0. 0.48 1.69 0. 3.86 13.59 0. 4.84 17.04 0. a) _{0.7}] _n 0.26 0.92 0. 0.02 0.07 0. 0. 0.06 0.21 0. 0. 0.76 2.68 0. 0. 0.75 0.88 0. 0. 1.59 5.60 0. 0. 1.59 5.60 0. 0. 1.06 3.73 0. 0. 0.53 1.87 0. 0.74 2.60 0.	0.081	16.92	
	Carbon Black	C	0.48	1.69	0.040	8.37
	Binder - Polyvinylidene Flouride (PVDF)	$(C_2H_2F_2)_n$	0.48	1.69	0.007	1.57
	Copper Foil	Cu	3.86	13.59	0.061	12.72
	Active Material - Graphite*	LiC ₆	4.84	17.04	0.061	12.83
Anode	Binder - Sodium Carboxymethylcellulose (CMC)	$[C_6H_7O_2(OH)_{2.3}(OCH_2COONa)_{0.7}]_n$	0.26	0.92	0.001	0.25
	SEI - Lithium Flouride	LiF	0.02	0.07	0.001	0.16
	SEI - Lithium Carbonate	Li ₂ CO ₃	(g) (%) (mol) 2.14 7.53 0.079 1 7.73 27.21 0.049 0.97 3.41 0.081 0.48 0.48 1.69 0.007 3.86 13.59 0.061 4.84 17.04 0.061 0.02 0.07 0.001 0.06 0.21 0.001 0.76 2.68 0.018 0.39 1.37 0.014 1.12 0.25 0.88 0.002 1.59 5.60 0.018 2.12 1.59 5.60 0.018 2.12 0.53 1.87 0.005 0.74 2.60 0.005	0.17		
Separator	Polypropylene (PP)	(C ₃ H ₆) _n	0.76	2.68	0.018	3.78
Separator	Polyehtylene (PE)	(C ₂ H ₄) _n	$(g) (\%) (m) \\ 2.14 7.53 0.0 \\ 7.73 27.21 0.0 \\ 0.97 3.41 0.0 \\ 0.48 1.69 0.0 \\ 0.00 0.21 0.0 \\ 0.00 0.21 0.0 \\ 0.00 0.21 0.0 \\ 0.00 0.21 0.0 \\ 0.00 0.21 0.0 \\ 0.00 0.21 0.0 \\ 0.00 0.0 \\ 0.13 0.46 0.0 \\ 0.25 0.88 0.0 \\ 1.59 5.60 0.0 \\ 0.159 5.60 0.0 \\ 0.159 5.60 0.0 \\ 0.159 5.60 0.0 \\ 0.159 5.60 0.0 \\ 0.159 5.60 0.0 \\ 0.159 5.60 0.0 \\ 0.159 5.60 0.0 \\ 0.159 5.60 0.0 \\ 0.159 5.60 0.0 \\ 0.159 5.60 0.0 \\ 0.159 5.60 0.0 \\ 0.159 5.60 0.0 \\ 0.159 5.60 0.0 \\ 0.159 5.60 0.0 \\ 0.212 7.46 0.0 \\ 0.53 1.87 0.0 \\ 0.74 2.60 0.0 \\ 0.4$	0.014	2.91	
	SEI - Polymer Organic - Poly(Vinylene Carbonate)	(C ₆ H ₄ O ₆) _n	0.13	0.46	0.001	0.16
	SEI - Organic - Lithium Ethylene Dicarbonate	(CH ₂ OCO ₂ Li) ₂	0.25	0.88	0.002	0.32
	Ethylene Carbonate (EC)	$C_3H_4O_3$	1.59	5.60	0.018	3.78
Electrolyte	Dimethyl Carbonate (DMC)	C ₃ H ₆ O ₃	2.12	7.46	0.024	4.93
	Ethyl Methyl Carbonate (EMC)	C ₄ H ₈ O ₃	1.06	3.73	0.010	2.13
	Propylene Carbonate (PC)	$C_4H_6O_3$	0.53	1.87	0.005	1.09
	Salt - Lithium Hexafluorophosphate	LiPF ₆	0.74	2.60	0.005	1.02
*Mass and resul	*Mass and resultant properties dependent on state-of-charge (SoC); mass given at delithiated state (8% Li in anode) 28.41 100.00					

^{8.37} <u>1.57</u> <u>12.72</u> - Literature sources - Calorimetry

- DFT computations
- NIST database

Heat of Formation Data:

- Additive group computations

Heat of Formation Computations

ΔH_f^0 estimated from group additive methods

Example Calculation: Poly(Vinylene Carbonate) - $(C_6H_4O_6)_n$

U I	Group	Number	Group ΔH_f Contribution Total Group ΔH_f Contributio			
၀္္တ္		Number	(kcal/mol)	(kcal/mol)	(kJ/mol)	(kJ/mol)
P Y	>C=O	2	-28.08	-56.16	-235.0	
\bigwedge	-0-	4	-15.79	-63.16	-264.3	-617 88
0~0	>CH-	4	-0.705	-2.820	-11.80	017.00
	Ring Correction	2	-12.768	-25.536	-106.84	
al da la Statione						

Chemica	ıl	ΔH _f			
Polyvinyidene Flouride (PVDF)	$(C_2H_2F_2)_n$	-390.93			
Sodium Carboxymethylcellulose (CMC)	$[C_6H_7O_2(OH)_{2.3}(OCH_2COONa)_{0.7}]_n$	-1093.38			
Polypropylene (PP)	(C ₃ H ₆) _n	-62.93			
Polyehtylene (PE)	$(C_2H_4)_n$	-43.46			
Poly(Vinylene Carbonate)	$(C_{6}H_{4}O_{6})_{n}$	-617.88			

CEA Inputs

Ambient gas (Ar) evaluated by ideal gas law

CEA Inputs:

- Battery composition
- Ambient conditions
 - Pressure ($P \sim 1 atm$), Temperature ($T_0 = 298 K$)
 - Gas composition and amount

Component			Molecular Weight	Μ	ass	Concer	ntration	Heat of Fo	ormation	Poforonco
	Component		(g/mol)	(g)	(%)	(mol)	(%)	(kJ/mol)	(kJ/g)	Reference
	Aluminum Foil	Al	26.982	2.14	7.53	0.079	16.61	0	0.00	-
	Active Material - LFP*	LiFePO ₄	157.756	7.73	27.21	0.049	10.26	-1616.02	-10.24	[Iyer et al., 2006]
Cathode	Particle Coating	C	12.011	0.97	3.41	0.081	16.92	0	0.00	-
	Carbon Black	C	12.011	0.48	1.69	0.040	8.37	0	0.00	-
	Binder - Polyvinylidene Flouride (PVDF)	$(C_2H_2F_2)_n$	64.035	0.48	1.69	0.007	1.57	-390.93	-6.10	Calculated
Anode	Copper Foil	Cu	63.546	3.86	13.59	0.061	12.72	0	0.00	-
	Active Material - Graphite*	LiC ₆	79.007	4.84	17.04	0.061	12.83	-11.65	-0.15	[Tanaka, 2014]
	Binder - Sodium Carboxymethylcellulose (CMC)	$[C_6H_7O_2(OH)_{2.3}(OCH_2COONa)_{0.7}]_n$	218.160	0.26	0.92	0.001	0.25	-1093.38	-5.01	Calculated
	SEI - Lithium Flouride	LiF	25.938	0.02	0.07	0.001	0.16	-616.93	-23.78	NIST
	SEI - Lithium Carbonate	Li ₂ CO ₃	73.888	0.06	0.21	0.001	0.17	-1216.04	-16.46	NIST
Senarator	Polypropylene (PP)	(C ₃ H ₆) _n	42.080	0.76	2.68	0.018	3.78	-62.93	-1.50	Calculated
Separator	Polyehtylene (PE)	(C ₂ H ₄) _n	28.054	0.39	1.37	0.014	2.91	-43.46	-1.55	Calculated
	SEI - Polymer Organic - Poly(Vinylene Carbonate)	(C ₆ H ₄ O ₆) _n	172.092	0.13	0.46	0.001	0.16	-617.88	-3.59	Calculated
	SEI - Organic - Lithium Ethylene Dicarbonate	(CH ₂ OCO ₂ Li) ₂	161.946	0.25	0.88	0.002	0.32	-1513.2	-9.34	[Tanaka, 2014]
	Ethylene Carbonate (EC)	$C_3H_4O_3$	88.062	1.59	5.60	0.018	3.78	-531	-6.03	NIST
Electrolyte	Dimethyl Carbonate (DMC)	$C_3H_6O_3$	90.078	2.12	7.46	0.024	4.93	-608.76	-6.76	NIST
	Ethyl Methyl Carbonate (EMC)	$C_4H_8O_3$	104.105	1.06	3.73	0.010	2.13	-644	-6.19	NIST
	Propylene Carbonate (PC)	$C_4H_6O_3$	102.089	0.53	1.87	0.005	1.09	-614.1	-6.02	NIST
	Salt - Lithium Hexafluorophosphate	LiPF ₆	151.905	0.74	2.60	0.005	1.02	-2296	-15.11	[Gavritchev et al., 2003]
*Mass and resultant properties dependent on state-of-charge (SoC); mass given at delithiated state (8% Li in anode)			28.41	100.00	0.477	100.00			22	

[Li] species is defined through SoC linear approximation

CEA inputs require knowledge of the apparent composition versus SOC (i.e. [*Li*] *atom accounting*)

CEA Analysis – LFP Battery

Moderate agreement between experiment and computation

[Golubkov et al., 2015]

AM

Key Findings:

- Experimental and Computational Agreement
 - Moderate (chemistry)
 - Poor (total gas production)
 - May be due to slow-heating experiments or unrestrictive LFP modeling
- Thermodynamic libraries yield significantly different results
- Appreciable amounts of toxic substances detected (HF and P_4O_6)
 - Dilute compounds not yet evaluated

- CEA modeling capability developed for TR of electrolytes and LFP batteries
 - Simple extension to other chemistries
 - Important computational products:
 - Product composition and chemistry
 - Flame temperature
 - Total heat release
- Experimental and computational agreement is moderate
 - Need for rapid heating experiments
 - Need for more restrictive modeling (cathode breakdown threshold)
- Future Work
 - Implementation of restrictive modeling inclusions
 - Validation via alternative cathode chemistry (NCA)
 - Validation via fast-heating experiments
 - Analyze effects of pressure, ambient composition, chemistry, etc.

Consequence Analysis of Li-Ion Battery Thermal Runaway Events with Chemical Equilibrium Analyses

DEPARTMENT OF MECHANICAL ENGINEERING

James 'Chris' Thomas, Ph.D. Postdoctoral Research Associate, Instructor Propulsion Laboratory TEES Turbomachinery Laboratory

3123 TAMU College Station, TX 77843

Cell. 210.859.8537 James.Chris.Thomas@tamu.edu | ChrisThomas2009@live.com linkedin.com/in/JamesChrisThomas researchgate.net/profile/James_Thomas 29

[1] S. Gordon and B. J. McBride, "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications," NASA Reference Publication 1311, 1996.

Literature Review

[2] E. P. Roth, C. C. Crafts, D. H. Doughty, and J. McBreen, "Advanced Technology Development Program for Lithium-Ion Batteries: Thermal Abuse Performance of 18650 Li-Ion Cells," Sandia Report 2004-0584, Sandia National Laboratories, 2004.

[3] Ribiere, P., Grugeon, S., Morcrette, M., Boyanov, S., Laruelle, S., and Marlair, G., "Investigation on the Fire-Induced Hazards of Li-Ion Battery Cells by Fire Calorimetry," *Energy and Environmental Science*, Vol. 5, 2012.

[4] V. Somandepalli, K. Marr, and Q. Horn, "Quantification of Combustion Hazards of Thermal Runaway Failures in Lithium-Ion Batteries," *SAE International Journal of Alternative Power*, Vol. 3, No. 1, 2014.

[5] V. Somandepalli, and H. Biteau, "Cone Calorimetry as a Tool for Thermal Hazard Assessment of Li-Ion Cells," *SAE International Journal of Alternative Power*, Vol. 3, No. 2, 2014.

[6] A. W. Golubkov, D. Fuchs, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thaler, and V. Hacker, "Thermal-Runaway Experiments on Consumer Li-Ion Batteries with Metal-Oxide and Olivin-Type Cathodes," *Royal Society of Chemistry Advances*, Vol. 4, 2014.

[7] A. W. Golubkov, S. Scheikl, R. Planteu, G. Voitic, H. Wiltsche, C. Stangl, G. Fauler, A. Thaler, and V. Hacker, "Thermal Runaway of Commercial 18650 Li-Ion Batteries with LFP and NCA Cathodes – Impact of State of Charge and Overcharge," *Royal Society of Chemistry Advances*, Vol. 5, 2015.

[8] Delafuente, D., "Gas Analysis of Li-Ion Batteries Single Cell Thermal Runaway and Propagation," *IAPG Chemical Working Group Meeting*, 2018.

Electrolyte Density Data

[9] Sigma Aldirch, Inc., Online Data, Accessed November 2018,

https://www.sigmaaldrich.com/catalog/search?term=Lithium+hexafluorophosphate+solution&interface=Product%20Name&N=0+&mode=mode e%20matchpartialmax&lang=en®ion=US&focus=productN=0%20220003048%20219853286%20219853269.

[10] Stewart, S., and Newman, J., "Measuring the Salt Activity Coefficient in Lithium-Battery Electrolytes," *Journal of the Electrochemical Society*, Vol. 155, No. 6, 2008.

[11] Salami, N., "Molecular Dynamics (MD) Study on the Electrochemical Properties of Electrolytes in Lithium-Ion Battery (LIB) Applications," *M.S. Thesis*, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 2014.

[12] Su, L., Darling, R. M., Gallagher, K. G., Xie, W., Thelen, J. L., Badel, A. F., Barton, J. L., Cheng, K. J., Balsara, N. P., Moore, J. S., and Brushett, F. R., "An Investigation of the Ionic Conductivity and Species Crossover of Lithiated Nafion 117 in Nonaqueous Electrolytes," *Journal of the Electrochemical Society*, Vol. 163, No. 1, 2016.

Heat of Formation Data

[13] Van Krevelen, D. W., and Chermin, H. A. G., "Estimation of the Free Enthalpy (Gibbs Free Energy) of Formation of Organic Compounds from Group Contributions," *Chemical Engineering Science*, Vol. 1, No. 2, 1951.

[14] NIST/TRC Wed Thermo Tables, Online Data, Accessed November 2018, https://wtt-pro.nist.gov/wtt-pro.

[15] Iyer, R. G., Delacourt, C., Masquelier, C., Tarascon, J. M., and Navrotsky, A., "Energetics of LiFePO4 and Polymorphs of Its Delithiated Form, FePO4," *Electrochemical and Solid-State Letters*, Vol. 9, No. 2, 2006.

[16] Tanaka, N., "Modeling and Simulation of Thermo-Electrochemistry of Thermal Runaway in Lithium-Ion Batteries," *Ph.D. Dissertation*, University of Stuttgart, Stuttgart, Germany, 2014.

[17] Gavritchev, K. S., Sharpataya, G. A., Smagin, A. A., Malyi, E. N., and Mayukha, V. A., "Calorimetric Study of Thermal Decomposition of Lithium Hexafluorophosphate," *Journal of Thermal Analysis and Calorimetry*, Vol. 73, No. 1, 2003.