#### CHARACTERIZATION OF THE GS YUASA 134 AH CELL THERMAL RUNAWAY EVENTS WITH LARGE FORMAT FRACTIONAL THERMAL RUNAWAY CALORIMETRY (L-FTRC)

William Q. Walker, Ph.D. / NASA Johnson Space Center, Houston TX USA

with contributions from and collaborations with:

Steven L. Rickman / NASA Engineering and Safety Center (NESC), Houston TX USA, Eric C. Darcy, Ph.D., John J. Darst, Damien T. Calderon, Ryan P. Brown, Richard A. Hagen, A.J. Sauter, & Peter J. Hughes / NASA Johnson Space Center (JSC), Houston TX USA, Gary Bayles / Science Applications International Corporation (SAIC<sup>®</sup>), Reston VA USA, David Petrushenko & Sean Comick / Universities Space Research Association (USRA), Columbia MD USA.

#### NASA AEROSPACE BATTERY WORKSHOP NOVEMBER 18<sup>th</sup>, 2020



# **GETTING STARTED**

- After the success of the small format fractional thermal runaway calorimeter (S-FTRC), there was a desire to develop similar capability for larger format lithium-ion (Li-ion) cells:
  - A recent NESC assessment was initiated in early 2018 to develop a large format fractional thermal runaway calorimeter (*L-FTRC*) capable of supporting cell formats with capacities greater than 100 Ah.
  - The NESC led assessment, which concluded in April 2020, involved collaboration between the NESC, NASA Johnson Space Center, NASA Glenn Research Center, SAIC<sup>®</sup>, and USRA.
  - The completed L-FTRC was designed trigger the 134 Ah GS Yuasa Li-ion cell (*LSE-134*) used by the International Space Station (*ISS*) into thermal runaway via nail penetration.
  - An extensive test series was conducted at the conclusion of the assessment at the test facilities provided by the JSC Energy Systems Test Area (*ESTA*) where 13 LSE-134 Li-ion cells were triggered into thermal runaway via nail penetration.
- A preliminary status of the L-FTRC results was presented at the NASA Aerospace Battery Workshop 2019; this presentation serves as presentation of the final results.



Disclaimer Statement | Company trade names and trademarks are used in this report for identification purposes only. The usage of company trade names and trade marks does not constitute as an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration (NASA). This presentation is made publicly available by NASA STRIVES 20205010284. The content of this presentation is not U.S. Export Controlled.

#### **GETTING STARTED**





# CALCULATING ENERGY YIELD

NASA

- The primary goal for the L-FTRC was to characterize both the total thermal runaway energy release and the fractions of the energy released through the cell casing vs. the ejected electrode winding vs. the ejected gases and effluents:
  - This is accomplished by calculating the  $\sum m_i C_{p_i} dT_i$  of the calorimeter components (cannot disclose images at this time) as a whole and then by dividing said energy calculations based on sub-assembly.
  - Plots below provide example of the L-FTRC thermal response to a LSE-134 cell thermal runaway event (Run 2).



### CALCULATING ENERGY YIELD

- Using  $\sum m_i C_{p_i} dT_i$ , the total energy yield as a function of time from trigger is calculated:
  - Approximately 1500-2000 s are required for the total energy to be "realized" by the system (this is a function of the thermal mass of the system and how the heat of the explosion is distributed through the system).
  - The energy fractions are determined based on the state of the L-FTRC system after 15 s from trigger.
  - The corresponding total energy curves and energy fractions for the previously shown temperature profiles (from Run 2) are given below.



# CALCULATING ENERGY YIELD

- The majority of the experiments, including Run 2 as discussed on the previous slides, resulted in a complete electrode winding ejection:
  - This resulted in energy fractions similar to what is shown on the previous chart where only 1-2% of the total energy yield was released through the cell body.
  - The remaining 98% to 99% was released through the electrode winding and ejecta materials.
- One experiment in the test series, Run 5, did not have a complete jellyroll ejection, which resulted in the fractional distribution shown in the image below.



NASA

Disclaimer Statement | Company trade names and trademarks are used in this report for identification purposes only. The usage of company trade names and trade marks does not constitute as an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration (NASA). This presentation is made publicly available by NASA STRIVES 20205010284. The content of this presentation is not U.S. Export Controlled.

### ADDRESSING VARIABILITY

- Since no two thermal runaway events are the same, test-to-test variability must be taken into consideration for any scientific effort that seeks to characterize the overall range of behavior.
- It is helpful to consider the variability of thermal runaway energy yield as a statistical distribution to help answer the following questions:
  - What is the highest probability energy release? What is the lowest?
  - What is the absolute maximum energy release? Minimum?



# ADDRESSING VARIABILITY

- Further analysis revealed lot-to-lot variability in thermal runaway response, even for a cell as highly controlled as the LSE-134:
  - The plots below show the Total Energy Yield as a function of the cell lot (300 series vs. 500 series).
  - Additional comparisons, beyond Total Energy Yield, as a function of cell lot are described in the NESC Report.



NASA

Disclaimer Statement | Company trade names and trademarks are used in this report for identification purposes only. The usage of company trade names and trade marks does not constitute as an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration (NASA). This presentation is made publicly available by NASA STRIVES 20205010284. The content of this presentation is not U.S. Export Controlled.

#### DETERMINATION OF EXPELLED GAS VOLUME

- A secondary goal for this assessment was to determine the volume, composition, and energy fractions of the gas that is expelled from the cell during thermal runaway:
  - Our system allows us to measure the flow rate of gases as they exit through a specialized exhaust path.
  - The flow rate is integrated over time to calculate the total volume of expelled gases.

NASA

 A sample flow rate plot (for Run 2) is shown to the bottom left and a plot showing the total expelled gases (for the experiments which used the gas collection system) is shown to the bottom right.



#### **GAS COMPOSITION**

- The gas constituents were similar to those observed in other thermal runaway events recorded in literature, with the exception that other tests normally detected carbon monoxide:
  - The largest component detected in our experiments was carbon dioxide in the range of 42% to 58%.
  - The table below shows all detected gas constituents from the gas samples collected during the final test series after adjusting for air and normalizing to 100%.

| Exhaust Gas Component               | Run #1 | Run #2       | Run #3  | Run #4 | Run #5  | Run #6  | Run #7 | Run #8  |
|-------------------------------------|--------|--------------|---------|--------|---------|---------|--------|---------|
|                                     |        | Insufficient |         |        |         |         |        |         |
| Carbon Dioxide, mole%               | 45%    | Sample       | 42%     | 42%    | 48%     | 41%     | 51%    | 52%     |
| Hydrogen, mole%                     | 35%    |              | 30%     | 35%    | 28%     | 33%     | 41%    | 35%     |
| Oxygen, mole%                       | 3%     |              | 2%      | 3%     | 1%      | 2%      | 3%     | 3%      |
| Ethane, mole%                       | 16%    |              | 15%     | 17%    | 15%     | 16%     | 2%     |         |
| Methane, mole%                      | 1%     |              | 5%      | 4%     |         |         | 4%     |         |
| Additional HCs +/- 1%               | < 1%   |              | < 1%    | < 1%   | < 1%    | < 1%    | < 1%   |         |
| Dimethyl Carbonate, mole %          | *      | *            | 1.732%  | *      | 1.457%  | 1.356%  | *      | 1.618%  |
| Ethyl Methyl Carbonate, mole %      | *      | *            | 5.096%  | *      | 5.935%  | 7.149%  | *      | 8.754%  |
| Diethyl Carbonate, mole %           | *      | *            | 0.0249% | *      | 0.0323% | 0.0394% | *      | 0.0511% |
| Total Mole% (Volume%)               | 100%   |              | 100%    | 100%   | 100%    | 100%    | 100%   | 100%    |
| * No electrolyte data for these run | ns     |              |         |        |         |         |        |         |



#### **TEST SERIES SUMMARY**

NASA

| Item                                                    | Units             | Experiment |            |            |            |            |            |            |            |            |            |            |            |           |
|---------------------------------------------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|
| Experiment ID                                           |                   | Run2       | Run3       | Run4       | Run5       | Run6       | Run7       | Run8       | Run9       | Run10      | Run11      | Run12      | Run13      | Run14     |
| Date of Experiment                                      | - / /             | 10/24/2019 | 10/25/2019 | 10/25/2019 | 10/28/2019 | 10/29/2019 | 10/29/2019 | 10/30/2019 | 10/30/2019 | 10/30/2019 | 10/31/2019 | 10/31/2019 | 10/31/2019 | 11/4/2019 |
| Time of Trigger                                         | - /               | 1:06PM     | 10:15AM    | 3:04PM     | 11:22AM    | 8:14AM     | 2:13PM     | 7:30AM     | 10:35AM    | 2:21PM     | 7:56AM     | 11:15AM    | 3:18PM     | 2:34PM    |
| Calorimeter Set (Green Red)                             | - //              | Red        | Green      | Red       |
| Cell Serial Number                                      | - /               | S/N 0558   | S/N 0549   | S/N 0563   | S/N 0569   | S/N 0385   | S/N 0397   | S/N 0538   | S/N 0560   | S/N 0388   | S/N 0562   | S/N 0552   | S/N 0384   | S/N 0553  |
| Cell Charged Voltage                                    | V                 | 4.092      | 4.090      | 4.090      | 4.090      | 4.080      | 4.080      | 4.080      | 4.090      | 4.080      | 4.080      | 4.100      | 4.090      | 4.060     |
| nitial Cell Mass                                        | kg                | 3.607      | 3.690      | 3.590      | 3.590      | 3.560      | 3.560      | 3.560      | 3.580      | 3.560      | 3.570      | 3.590      | 3.570      | 3.570     |
| PA Cell Mass                                            | kg                | 0.377      | 0.345      | 0.387      | 1.150      | 0.336      | 0.377      | 0.339      | 0.353      | 0.354      | 0.364      | 0.528      | 0.370      | 0.343     |
| PA Jellyroll Mass                                       | kg                | 1.801      | 1.542      | 1.851      | 0.526      | 2.056      | 2.046      | 1.959      | 1.964      | 2.026      | 1.705      | 1.016      | 2.054      | 1.953     |
| PA Cu Mesh 1 Soot Mass                                  | kg                | 0.013      | 0.023      | 0.008      | 0.052      | 0.009      | 0.022      | 0.014      | 0.011      | 0.010      | 0.033      | 0.099      | 0.011      | 0.015     |
| PA Cu Mesh 2 Soot Mass                                  | kg                | 0.011      | 0.026      | 0.013      | 0.080      | 0.016      | 0.021      | 0.018      | 0.018      | 0.013      | 0.029      | 0.072      | 0.012      | 0.021     |
| PA Cu Mesh 3 Soot Mass                                  | kg                | 0.027      | 0.063      | 0.017      | 0.118      | 0.018      | 0.032      | 0.027      | 0.030      | 0.021      | 0.065      | 0.113      | 0.029      | 0.055     |
| DPA Bore/Baffle Soot Mass                               | kg                | 0.453      | 0.490      | 0.294      | 0.586      | 0.378      | 0.330      | 0.380      | 0.362      | 0.325      | 0.432      | 0.547      | 0.307      | 0.467     |
| xhaust Gas Mass                                         | kg                | 0.637      | 0.397      | 0.596      | 0.574      | 0.638      | 0.637      | 0.616      | 0.616      | 0.616      | 0.616      | 0.616      | 0.616      | 0.616     |
| jected (Unrecovered) Mass                               | kg                | 0.288      | 0.804      | 0.428      | 0.505      | 0.108      | 0.094      | 0.209      | 0.228      | 0.190      | 0.326      | 0.596      | 0.166      | 0.098     |
| aseline Total Energy Yield                              | MJ                | 2.464      | 2.503      | 2.468      | 2.511      | 2.319      | 2.261      | 2.451      | 2.396      | 2.334      | 2.408      | 2.590      | 2.279      | 2.324     |
| onductive Heat Loss Rate                                | J s <sup>-1</sup> | 96.500     | 116.800    | 83.500     | 105.000    | 65.000     | 67.500     | 79.900     | 79.500     | 65.200     | 77.500     | 75.500     | 65.000     | 89.000    |
| xhaust Gas Heat Loss                                    | MJ                | 0.035908   | 0.020370   | 0.019357   | 0.029475   | 0.030972   | 0.017969   | 0.023288   | 0.021643   | 0.014086   | 0.024145   | 0.020971   | 0.015118   | 0.028885  |
| jected (Unrecovered) Mass Heat Loss                     | MJ                | 0.013390   | 0.038747   | 0.020112   | 0.025109   | 0.004689   | 0.003971   | 0.009783   | 0.010106   | 0.008447   | 0.015359   | 0.031925   | 0.007042   | 0.004330  |
| leat Loss Corrected Total Energy Yield                  | MJ                | 2.704      | 2.725      | 2.695      | 2.672      | 2.514      | 2.452      | 2.648      | 2.605      | 2.546      | 2.626      | 2.707      | 2.488      | 2.546     |
| Distribution <sub>Cell Body</sub>                       | MJ                | 0.037      | 0.045      | 0.043      | 0.148      | 0.011      | 0.036      | 0.025      | 0.031      | 0.024      | 0.035      | 0.095      | 0.033      | 0.048     |
| Distribution                                            | MJ                | 1.535      | 1.296      | 1.684      | 1.075      | 1.622      | 1.212      | 1.481      | 1.399      | 1.431      | 1.264      | 1.372      | 1.369      | 1.411     |
| Distribution <sub>Ejecta &amp; Vented Gas</sub>         | MJ                | 1.132      | 1.384      | 0.969      | 1.449      | 0.881      | 1.204      | 1.142      | 1.174      | 1.091      | 1.327      | 1.240      | 1.087      | 1.087     |
| Percent <sub>Cell Body</sub>                            | %                 | 1.369      | 1.658      | 1.587      | 5.522      | 0.452      | 1.470      | 0.935      | 1.200      | 0.943      | 1.348      | 3.511      | 1.318      | 1.898     |
| Percent <sub>Jellyroll</sub>                            | %                 | 56.758     | 47.556     | 62.473     | 40.244     | 64.516     | 49.438     | 55.943     | 53.716     | 56.198     | 48.135     | 50.671     | 55.008     | 55.427    |
| Percent <sub>Ejecta &amp; Vented Gas</sub>              | %                 | 41.873     | 50.786     | 35.940     | 54.234     | 35.033     | 49.092     | 43.121     | 45.084     | 42.859     | 50.517     | 45.818     | 43.675     | 42.676    |
| rror Band Total Energy Yield                            | MJ                | 2.929      | 3.030      | 2.919      | 2.971      | 2.722      | 2.726      | 2.868      | 2.896      | 2.758      | 2.919      | 2.931      | 2.766      | 2.758     |
| Updated Distribution <sub>Cell Body</sub>               | MJ                | 0.040      | 0.050      | 0.046      | 0.164      | 0.012      | 0.040      | 0.027      | 0.035      | 0.026      | 0.039      | 0.103      | 0.036      | 0.052     |
| Updated Distribution <sub>Jellyroll</sub>               | MJ                | 1.662      | 1.441      | 1.823      | 1.196      | 1.756      | 1.348      | 1.604      | 1.556      | 1.550      | 1.405      | 1.485      | 1.522      | 1.529     |
| Updated Distribution <sub>Ejecta &amp; Vented Gas</sub> | MJ                | 1.226      | 1.539      | 1.049      | 1.611      | 0.954      | 1.338      | 1.237      | 1.306      | 1.182      | 1.475      | 1.343      | 1.208      | 1.177     |
| otalized Exhaust Gas Volume                             | SL @ 20 °C        | 457.8      | 285.5      | 428.0      | 412.2      | 458.4      | 457.9      | 442.8      | 442.8      | 442.8      | 442.8      | 442.8      | 442.8      | 442.8     |
| otalized Displaced Air Volume                           | SL @ 20 °C        | 509.4      | 306.7      | 446.7      | 442.9      | 495.6      | 481.7      | 475.3      | 475.3      | 475.3      | 475.3      | 475.3      | 475.3      | 475.3     |
| Nax Expansion Chamber Pressure                          | psid              | 12.5       | 10.0       | 11.0       | 11.6       | 3.6        | 7.0        | 0.9        | 8.5        | 1.5        | 11.7       | 1.3        | 5.6        | 1.9       |
| Nax Gas Collection System Pressure:                     | psid              | 0.6        | 0.8        | 0.4        | 1.2        | 0.4        | 0.3        | -          | -          | -          | -          | -          | -          | -         |
| Aaximum Nail Temperature                                | °C                | BR         | BR         | BR         | 834.5      | 761.7      | 720.2      | 741.4      | 795.7      | 710.3      | 796.3      | 793.4      | BR         | BR        |
| Maximum Exhaust Gas Flow Rate                           | SLPS              | 119.6      | 129.49     | 138.96     | 131.4      | 90.356     | 97.809     | 115.6      | 115.6      | 115.6      | 115.6      | 115.6      | 115.6      | 115.6     |
| Approximate Length of Flow Event                        | S                 | 9          | 10         | 11         | 10         | 10         | 10         | 10         | 10         | 10         | 10         | 10         | 10         | 10        |

**BR** indicates "bad reading", recommend disregard.

Text indicates an estimated value used for calculations.

#### **TEST SERIES SUMMARY**

NASA

|                                                 |            | Glo    | bal   | Red Ha | rdware | Green H | Green Hardware |  |
|-------------------------------------------------|------------|--------|-------|--------|--------|---------|----------------|--|
| Item                                            | Units      | Avg    | StDev | Avg    | StDev  | Avg     | StDev          |  |
| Cell Charged Voltage                            | V          | 4.085  | 0.010 | 4.083  | 0.013  | 4.087   | 0.005          |  |
| Initial Cell Mass                               | kg         | 3.584  | 0.035 | 3.577  | 0.019  | 3.593   | 0.048          |  |
| DPA Cell Mass                                   | kg         | 0.433  | 0.221 | 0.381  | 0.068  | 0.493   | 0.322          |  |
| DPA Jellyroll Mass                              | kg         | 1.731  | 0.463 | 1.809  | 0.361  | 1.640   | 0.582          |  |
| DPA Cu Mesh 1 Soot Mass                         | kg         | 0.025  | 0.026 | 0.024  | 0.033  | 0.025   | 0.015          |  |
| DPA Cu Mesh 2 Soot Mass                         | kg         | 0.027  | 0.022 | 0.023  | 0.022  | 0.031   | 0.025          |  |
| DPA Cu Mesh 3 Soot Mass                         | kg         | 0.047  | 0.034 | 0.040  | 0.035  | 0.056   | 0.035          |  |
| DPA Bore/Baffle Soot Mass                       | kg         | 0.412  | 0.093 | 0.406  | 0.088  | 0.418   | 0.107          |  |
| Exhaust Gas Mass                                | kg         | 0.599  | 0.063 | 0.619  | 0.014  | 0.576   | 0.090          |  |
| Ejected (Unrecovered) Mass                      | kg         | 0.311  | 0.217 | 0.274  | 0.181  | 0.354   | 0.263          |  |
| Baseline Total Energy Yield                     | MJ         | 2.408  | 0.100 | 2.422  | 0.100  | 2.393   | 0.106          |  |
| Conductive Heat Loss Rate                       | J s⁻¹      | 82.0   | 16.2  | 79.2   | 11.7   | 85.2    | 21.0           |  |
| Exhaust Gas Heat Loss                           | MJ         | 0.026  | 0.007 | 0.025  | 0.008  | 0.021   | 0.005          |  |
| Ejected (Unrecovered) Mass Heat Loss            | MJ         | 0.015  | 0.011 | 0.013  | 0.010  | 0.017   | 0.013          |  |
| Heat Loss Corrected Total Energy Yield          | MJ         | 2.610  | 0.092 | 2.623  | 0.085  | 2.595   | 0.106          |  |
| Distribution <sub>Cell Body</sub>               | MJ         | 0.047  | 0.036 | 0.040  | 0.027  | 0.055   | 0.046          |  |
| Distribution <sub>Jellyroll</sub>               | MJ         | 1.396  | 0.165 | 1.505  | 0.115  | 1.269   | 0.117          |  |
| Distribution <sub>Ejecta &amp; Vented Gas</sub> | MJ         | 1.167  | 0.158 | 1.077  | 0.119  | 1.271   | 0.138          |  |
| Percent <sub>Cell Body</sub>                    | %          | 1.785  | 1.331 | 1.528  | 0.996  | 2.086   | 1.691          |  |
| Percent <sub>Jellyroll</sub>                    | %          | 53.545 | 6.430 | 57.426 | 4.646  | 49.016  | 5.254          |  |
| Percent <sub>Ejecta &amp; Vented Gas</sub>      | %          | 44.670 | 5.565 | 41.046 | 3.999  | 48.898  | 3.912          |  |
| Error Band Total Energy Yield                   |            | 2.861  | 0.102 | 2.841  | 0.092  | 2.885   | 0.117          |  |
| Updated Distribution <sub>Cell Body</sub>       |            | 0.052  | 0.040 | 0.044  | 0.029  | 0.061   | 0.051          |  |
| Updated Distribution <sub>Jellyroll</sub>       |            | 1.529  | 0.166 | 1.630  | 0.124  | 1.411   | 0.130          |  |
| Updated Distribution Ejecta & Vented Gas        |            |        |       | 1.167  | 0.129  | 1.413   | 0.154          |  |
| Totalized Exhaust Gas Volume                    | SL @ 20 °C |        |       |        | 17.4   | 385.2   | 89.3           |  |
| Totalized Displaced Air Volume                  | SL @ 20 °C | 447.2  | 73.7  | 483.9  | 32.9   | 410.4   | 91.9           |  |
| Max Expansion Chamber Pressure                  | psid       | 9.3    | 3.4   | 9.1    | 4.8    | 9.5     | 2.3            |  |
| Max Gas Collection System Pressure              | psid       | 0.6    | 0.3   | 0.5    | 0.1    | 0.8     | 0.4            |  |
| Maximum Nail Temperature                        | °C         |        |       | 751.7  | 34.9   | 786.7   | 47.9           |  |
| Totalized Exhaust Gas Volume                    |            | 17.4   | 2.8   | 18.7   | 0.8    | 16.1    | 3.7            |  |
| Maximum Exhaust Gas Flow Rate                   |            | 117.9  | 19.6  | 116.3  | 24.5   | 119.6   | 18.9           |  |
| Approximate Length of Flow Event                |            | 10.0   | 0.6   | 10.0   | 1.0    | 10.0    | 0.0            |  |

# CONCLUSIONS

- A large format fractional thermal runaway calorimeter (L-FTRC) for Li-ion cells with capacities greater than 100 Ah was developed and the testing capabilities were demonstrated:
  - The completed device was designed to trigger the LSE-134 Li-ion cell into thermal runaway via nail penetration; additional cell formats could be accommodated with custom L-FTRC cell chambers.
  - The device supports the discernment of both total energy yield and the fractional energy yield.
  - A test series was conducted at the NASA JSC ESTA where 14 LSE-134 Li-ion cells were triggered into thermal runaway via nail penetration.
  - Thermal data, gas flow data, and gas samples were collected.
- Of the 13 experiments, the average total energy release is 2.86 MJ with a standard deviation of 0.102 MJ; the corresponding average energy distribution is 1.8% through the cell casing, 53.5% through the electrode winding, and 44.7% through the ejecta and gases.
- Gas collection and flow rate measurement was conducted for 6 of the experiments; the totalized exhaust gas volume vented during thermal runaway ranged from 412.2 SL to 458.4 SL.
- All data given in this presentation is described in more detail in the final NESC report.

#### ACKNOWLEDGEMENTS

- NASA Engineering and Safety Center (NESC):
  - Steven Rickman, Kenneth Johnson, and Christopher Jannello, Ph.D.
- NASA JSC Engineering Directorate (EA):
  - Structural Engineering Division (ES).
  - Power and Propulsion Division (EP).
- L-FTRC Team Members.
- NASA JSC Energy Systems Test Area (ESTA).

#### QUESTIONS?

