

DESIGN CONSIDERATIONS FOR AEROSPACE BATTERY MANAGEMENT SYSTEMS

PRESENTERS Tabare Torres – Electrical Engineer I Anvin Joe Manadan – Senior Electrical Engineer Inventus Power Electrical Engineering Team, Technical Center Americas

4 MARCH 2024

AGENDA

- Introduction
- Battery Pack Architecture & Protections
- Li-ion Cells & Heater
- Power Optimization Electronics Selection & Storage Life
- Test & Verification
- Summary

INVENTUS POWER OVERVIEW

GLOBAL 🨏 countries **4** continents MANUFACTURING & DESIGN RESOURCES 3K employees 300+ engineers

VERTICALLY INTEGRATED engineering &

INNOVATIVE SOLUTIONS

for range of markets & applications

INVENTUS POWER OVERVIEW

GLOBAL LEADER IN ADVANCED BATTERY SYSTEMS

- Design & manufacture Li-ion battery solutions for military, medical, commercial & industrial markets
- Specialize in unique battery management system (BMS) solutions
- Global engineering & operations with US location focused on complex military & medical applications
 - Conformable Wearable Battery (CWB)
 - Worn directly by warfighter
 - Conformable to human body
 - High capacity (10.3Ah)
 - Small Form (8.6" x 7.6")
 - Ruggedized temperature, shock & atmospheric operation

DESIGN SCOPE

- Discussions limited to the application environment being Stratosphere (10-50km above Earth's surface):
- Temperature range: -60 to 0°C, Low pressure (10⁻³ atm), Low levels of radiation (UV)
- Lithium-ion cells are considered for the application mainly because of their high energy density and our expertise using them for similar applications
- Leveraging of design experience in MIL-STD testing and verification.

ARCHITECTURE & PROTECTIONS

4 MARCH 2024

PROTECTIONS & COMMUNICATIONS

- The architecture provides the below protections at multiple levels:
 - Cell over and under voltage
 - Cell over current and short circuit
 - Cell over temperature

- Understand trade-offs between protecting the pack & continuing to power the application device
 - If the application device has redundant battery packs, protections can be active
 - Otherwise, having a bypass switch to continue powering the application even at faulty conditions is desirable
 - Battery pack can communicate the faulty conditions to application device and the device can take steps to safely shutdown

LI-ION CELLS & HEATER

LI-ION CELLS

- Li-ion cells work differently in different temperatures, with comfortable operating range being -20°C to 60°C
- At cold temperatures, discharge current and capacity of cells degrade
- Select cell that can function in the temperature range of application (-60°C to 0°C), if not add heater
- Comparison between SAFT MP144350 and Panasonic UF553450Z

HEATER

- Utilize temperature sensors, placed at multiple positions in pack to measure cell temperature
- Range of temperatures for charge/discharge of cells available in datasheet
- Different types of heaters are available such as trace heating and heater pads.

HEATER STATE MACHINE

- Thr1: Minimum cell temperature to charge safely
- Thr2: Safe cell temperature to turn off heater while charging
- Thr3: Minimum cell temperature to discharge safely
- Thr4: Safe cell temperature to turn off heater while charging

POWER OPTIMIZATION

POWER OPTIMIZATION TECHNIQUES

- Heater Circuit
 - Cells lose charge capacity as a result of ambient temperature <0°C
 - Pre-charge of heater circuit allows cell to heat > 23°C before charge cycle
- CWB Battery Pack Operation Modes
 - Active (>7mA)
 - Sleep (> 2mA)
 - Shutdown (10 ~ 30μ A)
- Low Quiescent Electronic Design
 - Cascading Vcc lines after CHG, DSG FET

POWER PATH OPTIMIZATION

- Power MOSFETs
 - Low $R_{DS_{on}} \sim mOhm$, low V_{TH}
 - GaN technologies smaller and lower losses
- Sense Resistor
 - Low R_{Sense}~mOhm , Kelvin
 Connection
- Fuse / PTC
 - Low R_{Sense}~mOhm, 100% derating,
 - Smaller footprint ~ smaller R_{fuse}

ELECTRONICS SELECTION

- Commercial IC selection susceptible to latch-up, upset, gate rupture, extreme temperature failures.
- Selection of components for optimization (in order of importance)
 - Low quiescent power consumption, radiation hardness assurance (RHA), low voltage drop, small footprint

Category	Component	Company	Part	TID Rad. Assurance
Power Management	Low drop-out reg. (LDO)	TI	TPS7A4501-SP	100krad
Battery Management	BMS (2-7Series)	ТΙ	bq40z80	n/a
Power Management	DC/DC converter	ТІ	TPS50601A	100krad
Active	Power MOSFET	Infineon	BUY06CS45B-01	100krad
Microprocessor	ULA16-bit microcontroller	TI	MSP430FR5969-SP	50krad

STORAGE LIFE ANALYSIS

- Battery packs stored in idle "sleep" mode aboard vehicle; woken up upon use
- Pack life
- Cell self-discharge rate
- Quiescent current draw of PACK+ and BATT+
- Cascading component placement

- Battery Management System modes
 - Sleep
 - Shutdown
 - Active
- Resulting sleep storage life

	Month			
Storage - @ Initial State of Charge Defined Above	0	1	2	
Total Consumed Capacity (Typ)	0	28.38144	56.76288	
Total Consumed Capacity (From Minimum)	0	28.008	56.016	
Remaining Capacity (typ)	2512.5	2484.11856	2455.73712	2
Remaining Capacity (min cell start)	2437.5	2409.492	2381.484	
ASOC (from typ cell)	25.77%	25.48%	25.19%	
ASOC (from min cell)	25.00%	24.71%	24.43%	

TEST & VERIFICATION

PACK & CELL QUALIFICATION

Cell Qualification

Cell Impedance	Overcharge	Impact
Nail Penetration	Life Cycle	High Rate
OCV Table Test	Accelerated Storage	Altitude
Vibration	Hot Box	Low Temp/High Temp

Pack Qualification

Function Verification Test		Reliability Test		
1. Software logic verification test	10. Pins FMEA test	1. Higher temperature storage test	10. Altitude test	
2. DVT test for adapter	11. Communication test	2. Lower temperature storage test	11. Insertion test	
3. Compliance table test	12. V-I Curve test	3. Temperature shock test	12. Immersion test	
4. Component Thermal test for low/medium/high temperature	13. Cycle life test	4. Vibration test (810G)	13. IPXY test: X:0~4,Y:0~3	
5. Function cycles test for low/medium/high temperature	14. Operate temperature range test	5. Shock test (810G)	14. HALT test	
6. System application test		6. Humidity test		
7. Output Short Test		7. ISTA 1A/2A/3A test		
8. Fuel Gauge test		8. Flex test		
9. Cold start test		9. Drop test		

TEMPERATURE

Temperature Range : -65°C to 85°C

Temperature Testing Chart (DUT Temperature)

EXPLOSIVE ATMOSPHERE

- Test to Demonstrate:
 - Ability of material to operate in fuel-air explosive atmospheres without causing ignition
 - Explosive or burning reaction occurring within encased material will be contained and will not propagate outside the test item

Utilize heaters to maintain cell temperature at recommended range during charge & discharge is critical

Thorough test & verification in aerospace conditions at both cell & pack level ensure functionality

Optimizing power with electronic component selection, placement & various modes of operation provides long storage life & minimizes power loss

Inventus Power battery packs (i.e. CWB) have been tested under harsh atmospheric conditions are a strong base to modify for aerospace applications

Architecture with redundant protections at multiple levels ensures battery pack is safe to operate in environment

RHA and aerospacegrade components ensure system reliability, safety & traceability

4 MARCH 2024

SUMMARY

THANK YOU!

- Anvin Joe Manadan anvin.joemanadan@inventuspower.com
- Tabare Torres tabare.torres@inventuspower.com